Aquat. Living Resour.
Volume 35, 2022
Topical Issue - NORA 4 - Native Oyster Restoration Alliance 4th Conference
Article Number 5
Number of page(s) 13
Published online 20 May 2022
  • Altimira CM, Huelin F, Ros JD. 1981. Mol·luscs bentònics de les Illes Medes (Girona). I. Sistemàtica. Butll Inst Cat Hist Nat 47: 69–75. [Google Scholar]
  • Aguilar-Amat JB. 1935. Observacions Malacològiues.XXIII. Més dades malacològiques tarragonines. Butll Inst Cat Hist Nat 35: 77–80. [Google Scholar]
  • Aranda-Burgos JA, Da Costa F, Nóvoa S, Ojea J, Martínez-Patiño D. 2014. Embryonic and larval development of Ruditapes decussatus (Bivalvia: Veneridae): a study of the shell differentiation process. J Mollusc Stud 80: 8–16. [CrossRef] [Google Scholar]
  • Araya, R G, Mingant, C, Petton, B, Robert, R. 2012. Influence of diet assemblage on Ostrea edulis broodstock conditioning and subsequent larval development. Aquaculture 364: 272–280. [CrossRef] [Google Scholar]
  • Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, Defeo O, Edgar GJ, Hancock B, Kay MC. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61: 107–116. [CrossRef] [Google Scholar]
  • Bonnin J, Rodrígez-Babío C. 1990. Catálogo provisional de los moluscos bivalvos marinos de la plataforma continental de las costas mediterráneas de la Península Ibérica y de las Islas Baleares. Iberus 9: 97–110. [Google Scholar]
  • Brenner M, Fraser D, Van Nieuwenhove K, O'Beirn, F, Buck BH, Mazurié J, Thorarinsdottir G, Dolmer P, Sanchez-Mata A, Strand O, Flimlin G, Miossec L, Kamermans P. 2014. Bivalve aquaculture transfers in Atlantic Europe. Part B: environmental impacts of transfer activities. Ocean Coast Manag 89: 139–146. [CrossRef] [Google Scholar]
  • Brunet J., Capdevila M. 2005. Atlas malacològic del Delta de l’Ebre. Privately published. pp. 198 [Google Scholar]
  • Brumbaugh R.D., Coen L.D. 2009. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. J Shellfish Res 28: 147–161. [CrossRef] [Google Scholar]
  • Buroker N.E. 1985. Evolutionary patterns in the family Ostreidae: larviparity vs. oviparity. J Exp Mar Biol Ecol 90: 233–247. [CrossRef] [Google Scholar]
  • Camacho-Rodríguez J., Cerón-García M.C., Macías-Sánchez M.D., Fernández-Sevilla J.M., López-Rosales L., Molina-Grima E. 2016. Long-term preservation of concentrated Nannochloropsis gaditana cultures for use in aquaculture. J Appl Phycol 28: 299–312. [CrossRef] [Google Scholar]
  • Carmichael R.H., Walton W., Clark H. 2012. Bivalve enhanced nitrogen removal from coastal estuaries. Can J Fish Aquat Sci 69: 1131–1149. [CrossRef] [Google Scholar]
  • Castejón D., Guerao G. 2013. A new record of the American blue crab, Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae), from the Mediterranean coast of the Iberian Peninsula. BioInvasions Rec 2: 141–143. [CrossRef] [Google Scholar]
  • Cerco C., Noel M. 2007. Can oyster restoration reverse cultural eutrophication in Chesapeake Bay? Estuar Coasts 30: 331–343. [CrossRef] [Google Scholar]
  • Coen L.D., Luckenbach M.W. 2000. Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation? Ecol Eng 15: 323–343. [CrossRef] [Google Scholar]
  • Cole H.A. 1942. Primary sex-phases in Ostrea edulis. J Cell Sci 2: 317–356. [CrossRef] [Google Scholar]
  • Colsoul B., Boudry P., Pérez‐Parallé M.L., Bratoš Cetinić A., Hugh‐Jones, T., et al. 2021. Sustainable large‐scale production of European flat oyster (Ostrea edulis) seed for ecological restoration and aquaculture: a review. Rev Aquacult 13: 1423–1468. [CrossRef] [Google Scholar]
  • Coffin M.R., Clements J.C., Comeau L.A., Guyondet T., Maillet M., et al. 2021. The killer within: Endogenous bacteria accelerate oyster mortality during sustained anoxia. Limnol Oceanogr 2885–2900. DOI: 10.1002/lno.11798 [CrossRef] [Google Scholar]
  • Cuerda J., Gracia F., Vicens D. 1989. Dos nuevos yacimientos del Pleistoceno superior marino en Porto Colom (Mallorca). Boll Soc Hist Nat Balears 33: 49–66. [Google Scholar]
  • de Porta J. 1987. Los Ostreidae en el contexto de la sedimentación del Mioceno marino de la Depresión Prelitoral Catalana (Noroeste de España). Acta Geol Hisp 21: 549–554. [Google Scholar]
  • El Asri F., Martin D., Tamsouri M.N., Errhif A., Maanan M., Idrissi M.M., Zidane H. 2019. Spatial and temporal variability in distribution, diversity, and structure of the polychaete assemblages from Dakhla Bay (Atlantic coast of South Morocco). Mar Biodiv 49: 1271–1281. [CrossRef] [Google Scholar]
  • Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. [CrossRef] [PubMed] [Google Scholar]
  • García-March J.R., Tena J., Henandis S., Vázquez-Luis M., López D., et al., 2020. Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction? Biol Conserv 243: 108498. [CrossRef] [Google Scholar]
  • Goelz T., Vogt B., Hartley T. 2020. Alternative substrates used for oyster reef restoration: a review. J Shellfish Res 39: 1–12. [CrossRef] [Google Scholar]
  • González-Wangüemert M., Pérez-Ruzafa A., Rosique M.J., Ortiz A. 2004. Genetic differentiation in two cryptic species of Ostreidae, Ostrea edulis (Linnaeus, 1758) and Ostreola stentina (Payraudeau, 1826) in Mar Menor Lagoon, southwestern Mediterranean Sea. Nautilus 118: 103–111. [Google Scholar]
  • González-Araya R, Robert, R. 2018. Larval development and fatty acid composition of Ostrea edulis (L.) fed four different single diets from conditioning to pre–settlement. Aquaculture Research 49: 1768–1781. [CrossRef] [Google Scholar]
  • Gray M.W., Chaparro O., Huebert K.B., O'Neill S.P., Couture T., Moreira A., Brady D.C. 2019. Life history traits conferring larval resistance against ocean acidification: the case of brooding oysters of the genus Ostrea. J Shellfish Res 38: 751–761. [CrossRef] [MathSciNet] [Google Scholar]
  • Helm M.M., Bourne N., Lovatelli A. 2004. Hatchery culture of bivalves. A Practical Manual., FAO Fisheries Technical Paper 471. FAO Publishing, Rome, Italy. pp. 98 [Google Scholar]
  • Helm M.M. 1977. Mixed algal feeding of Ostrea edulis larvae with Isochrysis galbana and Tetraselmis suecica. J Mar Biol Assoc UK 57: 1019–1029. [CrossRef] [Google Scholar]
  • Hernandis S., Ibarrola I., Tena J., Vázquez-Luis M., García-March J.R., Prado P., Albentosa M. (submitted) SFG (scope for growth) methodology evidence poor nutritional results of commercial microalgal diets in Pinna rudis. Aquat Sci (Ref.: AQSC-D-22-00037). [Google Scholar]
  • Hill K.M., Carnegie R.B., Aloui-Bejaoui N., El Gharsalli R., White D.M., Stokes N.A., Burreson E.M. 2010. Observation of a Bonamia sp. infecting the oyster Ostrea stentina in Tunisia, and a consideration of its phylogenetic affinities. J Invert Pathol 103: 179–185. [CrossRef] [Google Scholar]
  • Hu L., Wang H., Zhang Z., Li C., Guo X. 2019. Classification of small flat oysters of Ostrea stentina species complex and a new species Ostrea neostentina sp. nov. (Bivalvia: Ostreidae). J Shellfish Res 38: 295–308. [CrossRef] [MathSciNet] [Google Scholar]
  • Hughes A.R., Hanley T.C., Byers J.E., Grabowski J.H., McCrudden T., Piehler M.F., Kimbro D.L. 2019. Genetic diversity and phenotypic variation within hatchery‐produced oyster cohorts predict size and success in the field. Ecol Appl 29: e01940. [CrossRef] [PubMed] [Google Scholar]
  • Joyce A., Holthuis T.D., Charrier G., Lindegarth S. 2013. Experimental effects of temperature and photoperiod on synchrony of gametogenesis and sex ratio in the European oyster Ostrea edulis (Linnaeus). J Shellfish Res 32: 447–458. [CrossRef] [Google Scholar]
  • Kamphausen L., Jensen A., Hawkins L. 2011. Unusually high proportion of males in a collapsing population of commercially fished oysters (Ostrea edulis) in the Solent, United Kingdom. J Shellfish Res 30: 217–223. [CrossRef] [Google Scholar]
  • Knuckey R.M., Brown M.R., Robert R., Frampton D.M. 2006. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35: 300–313. [CrossRef] [Google Scholar]
  • Kroll I.R., Poray A.K., Puckett B.J., Eggleston D.B., Fodrie F.J. 2016. Environmental effects on elemental signatures in eastern oyster Crassostrea virginica shells: using geochemical tagging to assess population connectivity. Mar Ecol Progr Ser 543: 173–186. [CrossRef] [Google Scholar]
  • Kumar S., Stecher G., Li M., Knyaz C., Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molec Biol Evol 35: 1547–1549. [CrossRef] [PubMed] [Google Scholar]
  • Lapègue S., Salah I.B., Batista F.M., Heurtebise S., Neifar L., Boudry P. 2006. Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris. Mar Biol 150: 103–110. [CrossRef] [Google Scholar]
  • Lenihan H.S., Micheli F., Shelton S.W., Peterson C.H. 1999. The influence of multiple environmental stressors on susceptibility to parasites: an experimental determination with oysters. Limnol Oceanogr 44: 910–924. [CrossRef] [Google Scholar]
  • Lenihan H.S., Peterson C.H. 1998. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol Appl 8: 128–140. [CrossRef] [Google Scholar]
  • Lin J. 1991. Predator-prey interactions between blue crabs and ribbed mussels living in clumps. Estuar Coast Shelf Sci 2: 61–69. [CrossRef] [Google Scholar]
  • Lockwood R., Mann R. 2019. A conservation palaeobiological perspective on Chesapeake Bay oysters. Phil Trans Royal Soc B 374: 20190209. [CrossRef] [PubMed] [Google Scholar]
  • Lodeiros C., Soria G., Valentich-Scott P., Munguía-Vega A., Cabrera J.S., Cudney-Bueno R., Looe A., Márquez A., Sonnenholzner S. 2016. Spondylids of eastern Pacific Ocean. J Shellfish Res 35: 279–294. [CrossRef] [Google Scholar]
  • López V., Rodon J. 2018. Diagnosi i situació actual del Cranc Blau (Callinectes sapidus) al delta de l’Ebre. Direcció General de Pesca i Afers Marítims, Generalitat de Catalunya. [Google Scholar]
  • Loor A., Ortega D., Lodeiros C., Sonnenholzner S. 2016. Early life cycle and effects of microalgal diets on larval development of the spiny rock–scallop, Spondylus limbatus (Sowerby I.I., 1847). Aquaculture 450: 328–334. [CrossRef] [Google Scholar]
  • Maneiro V., Santos Y., Pazos A.J., Silva A., Torres-Corral Y., Sánchez J.L., Pérez-Parallé M.L. 2020. Effects of food ration, water flow rate and bacteriological levels of broodstock on the reproductive conditioning of the European flat oyster (Ostrea edulis, Linnaeus 1758). Aquacut Rep 18: 100412. [CrossRef] [Google Scholar]
  • Maneiro V., Silva A., Pazos A.J., Sánchez J.L., Pérez‐Parallé M.L. 2017. Effects of temperature and photoperiod on the conditioning of the flat oyster (Ostrea edulis L.) in autumn. Aquacult Res 48: 4554–4562. [CrossRef] [Google Scholar]
  • Mazzi V. 1977. Manuale di tecniche istologiche e istochimiche. Piccin-Nuova Libraria (Ed.), Padova, Italy. [Google Scholar]
  • Mesías-Gansbiller C., Silva A., Maneiro V., Pazos A., Sánchez J.L., Pérez-Parallé M.L. 2013. Effects of chemical cues on larval settlement of the flat oyster (Ostrea edulis L.): a hatchery approach. Aquaculture 376: 85–89. [CrossRef] [Google Scholar]
  • Meyer D.L., Townsend E.C., Thayer G.W. 1997. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor Ecol 5: 93–99. [CrossRef] [Google Scholar]
  • Neo M.L., Todd P.A., Teo S.L.M., Chou L.M. 2013. The effects of diet, temperature and salinity on survival of larvae of the fluted giant clam, Tridacna squamosa. J Conch 4: 369–376. [Google Scholar]
  • Paillard C., Le Roux F., Borrego J.J. 2004. Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Liv Res 17: 477–498. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pejovic I., Ardura A., Miralles L., Arias A., Borrell Y.J., García-Vázquez E. 2016. DNA barcoding for assessment of exotic molluscs associated with maritime ports in northern Iberia. Mar Biol Res 12: 168–176. [CrossRef] [Google Scholar]
  • Prado P. 2018. Seagrass epiphytic assemblages are strong indicators of agricultural discharge but weak indicators of host features. Estuar Coast Shelf Sci 204: 140–148. [CrossRef] [Google Scholar]
  • Prado P., Grau A., Catanese G., Cabanes P., Carella F., Fernández-Tejedor M., Andree K.A., Añón T., Hernandis S., Tena J., García-March J.R. 2021a. Pinna nobilis in suboptimal environments are more tolerant to disease but more vulnerable to severe weather phenomena. Mar Environ Res 163: 105220. [CrossRef] [PubMed] [Google Scholar]
  • Prado P., Cabanes P., Hernandis S., García-March J.R., Tena J. 2021b. Stable isotope analyses reveal major nutritional deficiencies in captive vs. field juvenile individuals of Pinna nobilis. Mar Environ Res 168: 105304. [CrossRef] [PubMed] [Google Scholar]
  • Prado P., Peñas A., Ibáñez C., Cabanes P., Jornet L., Álvarez N., Caiola N. 2020a. Prey size and species preferences in the invasive blue crab, Callinectes sapidus: Potential effects in marine and freshwater ecosystems. Estuar Coastal Shelf Sci 245: 106997. [CrossRef] [Google Scholar]
  • Prado P., Cabanes P., Catanese G., Carella F., Carrasco N., Grau A., Hernandis S., García-March J.R., Tena J., Caiola N., Andree K.A. 2020b. Growth of juvenile Pinna nobilis in captivity conditions: Dietary and pathological constraints. Aquaculture 522: 735167. [CrossRef] [Google Scholar]
  • Prado P., Caiola N., Ibáñez C. 2014. Habitat use by a large population of Pinna nobilis in shallow waters. Sci Mar 78: 555–565. [CrossRef] [Google Scholar]
  • Pruett J.L., Pandelides A.F., Willett K.L., Gochfeld D.J. 2021. Effects of flood-associated stressors on growth and survival of early life stage oysters (Crassostrea virginica). J Exp Mar Biol Ecol 544: 151615. [CrossRef] [Google Scholar]
  • Ré P. 1996. Anchovy spawning in Mira estuary (southwestern Portugal). Sci Mar 60: 141–153. [Google Scholar]
  • Rech S., Borrell Pichs Y.J., García-Vazquez E. 2018. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PloS one 13: e0191859. [CrossRef] [PubMed] [Google Scholar]
  • Richards G.W., Vita-Finzi C. 1982. Marine deposits 35,000–25,000 years old in the Chott el Djerid, southern Tunisia. Nature 295: 54–55. [CrossRef] [Google Scholar]
  • Richardson C.A., Collis S.A., Ekaratne K., Dare P., Key D. 1993. The age determination and growth rate of the European flat oyster, Ostrea edulis, in British waters determined from acetate peels of umbo growth lines. ICES J Mar Sci 50: 493–500. [CrossRef] [Google Scholar]
  • Rikard F.S., Walton W.C. 2012. Use of microalgae concentrates for rearing oyster larvae, Crassostrea virginica. Mississippi–Alabama Sea Grant Publication No.: MASGP-12: 48. [Google Scholar]
  • Robert R., Vignier J., Petton B. 2017. Influence of feeding regime and temperature on development and settlement of oyster Ostrea edulis (Linnaeus, 1758) larvae. Aquacult Res 48: 4756–4773. [CrossRef] [Google Scholar]
  • Rolton A., Vignier J., Volety A.K., Pierce R.H., Henry M., Shumway S.E., Bricelj M., Hégaret H., Soudant P. 2016. Effects of field and laboratory exposure to the toxic dinoflagellate Karenia brevis on the reproduction of the eastern oyster, Crassostrea virginica, and subsequent development of offspring. Harmful Algae 57: 13–26. [CrossRef] [PubMed] [Google Scholar]
  • Rosique M.J., Garcia-Garcia B., Rosique M. 1995. Primera aproximación a la identificación del comportamiento en cultivo de dos especies de ostreidos del Mar Menor. In: Ministerio de Agricultura, Pesca y Alimentación, editor. Actas del V Congreso Nacional de Acuicultura, Cartagena, Murcia. pp. 106–112. [Google Scholar]
  • Salah I.B., Bouain A., Neifar L. 2012. Gonadal cycle of the dwarf oyster Ostreola stentina from the south of the Gulf of Hammamet on the eastern coast of Tunisia. Afr J Mar Sci 34: 537–545. [CrossRef] [Google Scholar]
  • Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425. [PubMed] [Google Scholar]
  • Schnute J.T., Richards L.J. 1990. A unified approach to the analysis of fish growth, maturity, and survivorship data. Can J Fish Aquat 47: 24–40. [CrossRef] [Google Scholar]
  • Southgate P.C., Beer A.C., Ngaluafe P. 2016. Hatchery culture of the winged pearl oyster, Pteria penguin, without living micro-algae. Aquaculture 451: 121–124. [CrossRef] [Google Scholar]
  • Southgate P.C., Braley R.D., Militz T.A. 2017. Ingestion and digestion of micro-algae concentrates by veliger larvae of the giant clam, Tridacna noae. Aquaculture 473: 443–448. [CrossRef] [Google Scholar]
  • Tamura K., Nei M., Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceed Nat Acad Sci (USA) 101: 11030–11035. [CrossRef] [PubMed] [Google Scholar]
  • Tarruella A., López J. 2006. Moluscos marinos del Baix Camp (Tarragona, NE Península Ibérica). Spira 2: 1–16. [Google Scholar]
  • Thompson J.D., Higgins D.G., Gibson T.J. 1994. Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific-gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. [CrossRef] [PubMed] [Google Scholar]
  • Trigos S., Vicente N., Prado P., Espinós F.J. 2018. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483: 102–110. [CrossRef] [Google Scholar]
  • Wassnig M., Southgate P. 2016. The effects of stocking density and ration on survival and growth of winged pearl oyster (Pteria penguin) larvae fed commercially available micro-algae concentrates. Aquacult Rep 4: 17–21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.