Physiomar10
Free Access
Issue
Aquat. Living Resour.
Volume 24, Number 3, July-September 2011
Physiomar10
Page(s) 247 - 260
DOI https://doi.org/10.1051/alr/2011114
Published online 29 June 2011
  • Ackman R.G., Hooper S.N., 1973, Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates, a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 46, 153–165. [Google Scholar]
  • Bayne B.L., 2004, Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integr. Comp. Biol. 44, 425–432. [CrossRef] [PubMed] [Google Scholar]
  • Bell J.G., Sargent J.R., 2003, Arachidonic acid in aquaculture feeds, current status and future opportunities. Aquaculture 218, 491–499. [CrossRef] [Google Scholar]
  • Ben Kheder R., Queré C., Moal J., Robert R., 2010a, Effect of nutrition on Crassostrea gigas development and the evolution of physiological indices, Part A: Quantitative and qualitative diet effects. Aquaculture 305, 165–173. [CrossRef] [Google Scholar]
  • Ben Kheder R., Quere C., Moal J., Robert R., 2010b, Effect of nutrition on Crassostrea gigas larval development and the evolution of physiological indices, Part B: Effects of temporary food deprivation. Aquaculture 308, 174–182. [CrossRef] [Google Scholar]
  • Canesi L., Gallo G., Gavioli M., Pruzzo C., 2002, Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc. Res. Techniq. 57, 469–476. [CrossRef] [Google Scholar]
  • Childress J.J., Somero G.N., 1979, Depth-related enzyme activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52, 272–283. [Google Scholar]
  • Chu F.-L., Webb K.L., 1984, Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster Crassostrea virginica. Lipids 19, 815–820. [CrossRef] [Google Scholar]
  • Dandapat J., Chainy G.B.N., Rao K.J., 2003, Lipid peroxidation and antioxidant defense status during larval development and metamorphosis of giant prawn, Macrobrachium rosenbergii. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 135, 221–233. [CrossRef] [Google Scholar]
  • Delaunay F., Marty Y., Moal J., Samain J.-F., 1992, Growth and lipid class composition of Pecten maximus (L.) larvae grown under hatchery conditions. J. Exp. Mar. Biol. Ecol. 163, 209–219. [CrossRef] [Google Scholar]
  • Delaunay F., Marty Y., Moal J., Samain J.-F., 1993, The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173, 163–179. [CrossRef] [Google Scholar]
  • Derewenda Z.S., 1994, Structure and function of lipases. Adv. Protein Chem. 45, 1–52. [CrossRef] [PubMed] [Google Scholar]
  • Elston R., Leibovitz L., 1980, Pathogenesis of experimental vibriosis in larval American oysters, Crassostrea virginica. Can. J. Fish. Aquat. Sci. 37, 964–978. [CrossRef] [Google Scholar]
  • Estes R.M., Friedman C.S., Elston R.A., Herwig R.P., 2004, Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae. Dis. Aquat. Org. 58, 223–230. [CrossRef] [PubMed] [Google Scholar]
  • Farias A., Bell, J.G., Uriarte I., Sargent J.R., 2003, Polyunsaturated fatty acids in total lipid and phospholipids of Chilean scallop Argopecten purpuratus (L.) larvae, effects of diet and temperature. Aquaculture 228, 289–305. [CrossRef] [Google Scholar]
  • Flohé L., Ötting F., 1985, Superoxide dismutase assays. Methods Enzymol. 150, 93–104. [Google Scholar]
  • Flye-Sainte-Marie J., Pouvreau S., Paillard C., Jean F., 2007, Impact of Brown Ring Disease on the energy budget of the Manila clam Ruditapes philippinarum. J. Exp. Mar. Biol. Ecol. 349, 378–389. [CrossRef] [Google Scholar]
  • Folch J., Lees M., Sloane-Stanley G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. [Google Scholar]
  • Gale L.D., Manzi J.J., Crosby M.P., 1991, Energetic costs to the eastern oyster Crassostrea-virginica due to recent parasitism by the ectoparasitic gastropod Boonea impressa. Mar. Ecol. Prog. Ser. 79, 89–98. [CrossRef] [Google Scholar]
  • Gallager S.M., Mann R., Sasaki G.C., 1986, Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56, 81–103. [CrossRef] [Google Scholar]
  • Garcia-Esquivel Z., Bricelj V.M., Felbeck H., 2002, Metabolic depression and whole-body response to enforced starvation by Crassostrea gigas postlarvae. Comp. Biochem. Physiol. 133, 63–77. [CrossRef] [PubMed] [Google Scholar]
  • Gomez-Leon J., Villamil L., Lemos M.L., Novoa B., Figueras A., 2005, Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl. Environ. Microbiol. 71, 98–104. [CrossRef] [PubMed] [Google Scholar]
  • Griffiths S., Melville K., Cook M., Vincent S., St Pierre M., Lanteigne C., 2001, Profiling of bacterial species associated with haddock larviculture by PCR amplification of 16S rDNA and denaturing gradient gel electrophoresis. J. Aquat. Anim. Health. 13, 355–363. [CrossRef] [Google Scholar]
  • Guillard R.R.L. 1975, Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L., Chanley M.H. (Eds.), Culture of Marine Invertebrate Animals, New York, Plenum Press, pp. 29–60. [Google Scholar]
  • Holland D.L., Spencer B.E., 1973, Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development, metamorphosis and early spat growth. J. Mar. Biol. Assoc. UK 53, 287–298. [CrossRef] [Google Scholar]
  • Istivan T.S., Coloe P.J., 2006, Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology 152, 1263–1274. [CrossRef] [PubMed] [Google Scholar]
  • Ivanina A.V., Froelich B., Williams T., Sokolov E.P., Oliver J.D., Sokolova I.M., 2011, Interactive effects of cadmium and hypoxia on metabolic responses and bacterial loads of eastern oysters Crassostrea virginica Gmelin. Chemosphere 82, 377–389. [CrossRef] [PubMed] [Google Scholar]
  • Kesarcodi-Watson A., Kaspar H., Lategan M.J., Gibson L., 2008, Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14. [CrossRef] [Google Scholar]
  • Klingensmith J.S., 1982, Distribution of methylene and nonmethylene-interrupted dienoic fatty acids in polar lipids and triacylglycerols of selected tissues of the hardshell clam (Mercenaria mercenaria). Lipids 17, 976–981. [CrossRef] [PubMed] [Google Scholar]
  • Labreuche Y., Soudant P., Goncalves M., Lambert C., Nicolas J.L., 2006a, Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Dev. Comp. Immunol. 30, 367–379. [CrossRef] [PubMed] [Google Scholar]
  • Labreuche Y., Lambert C., Soudant P., Boulo V., Huvet A., Nicolas J.L., 2006b, Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32. Microbes Infect. 8, 2715–2724. [CrossRef] [PubMed] [Google Scholar]
  • Lambert C., Soudant P., Choquet G., Paillard C., 2003, Measurement of Crassostrea gigas hemocyte oxidative metabolism by flow cytometry and the inhibiting capacity of pathogenic vibrios. Fish Shellfish Immunol. 15, 225–240. [CrossRef] [PubMed] [Google Scholar]
  • Lambert C., Soudant P., Degremont L., Delaporte M., Moal J., Boudry P., Jean F., Huvet A., Samain J.F., 2007, Hemocyte characteristics in families of oysters, Crassostrea gigas, selected for differential survival during summer and reared in three sites. Aquaculture 270, 276–288. [CrossRef] [Google Scholar]
  • Langdon C.J., Waldock M.J., 1981, The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Assoc. UK 61, 431–448. [CrossRef] [Google Scholar]
  • Lepage G., Roy C.C., 1984, Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25, 1391–1396. [Google Scholar]
  • Leeuwenburgh C., Hollander J., Leichtweis S., GriYths N., Gore M., Ji L.L., 1997, Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am. J. Physiol. 272, R363–R369. [PubMed] [Google Scholar]
  • Marie B., Genard B., Rees J.F., Zal F., 2006, Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Mar. Biol. 150, 273–284. [CrossRef] [Google Scholar]
  • McCord J.M., Fridovich I., 1969, Superoxide Dismutase, an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055. [Google Scholar]
  • Meyer E., Green A.J., Moore M., Manahan D.T., 2007, Food availability and physiological state of sea urchin larvae (Strongylocentrotus purpuratus). Mar. Biol. 152, 179–191. [CrossRef] [Google Scholar]
  • Morales A.E., Perez-Jimenez A., Hidalgo M.C., Abellan E., Cardenete G., 2004, Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. 139, 153–161. [PubMed] [Google Scholar]
  • Moran A.L., Manahan D.T., 2003, Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni. Biol. Bull. 204, 270–277. [CrossRef] [PubMed] [Google Scholar]
  • Moran A.L., Manahan D.T., 2004, Physiological recovery from prolonged “starvation” in larvae of the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 306, 17–36. [CrossRef] [Google Scholar]
  • Nicolas J.L., Corre S., Gauthier G., Robert R., Ansquer D., 1996, Bacterial problems associated with scallop Pecten maximus larval culture. Dis. Aquat. Org. 27, 67–76. [CrossRef] [Google Scholar]
  • Nohl H., Gille L., Staniek K., 2005, Intracellular generation of reactive oxygen species by mitochondria. Biochem. Pharmacol. 69, 719–723. [CrossRef] [PubMed] [Google Scholar]
  • Nohl H., Kozlov A.V., Gille L., Staniek K., 2003, Cell respiration and formation of reactive oxygen species, facts and artefacts. Biochem. Soc. Trans. 31, 1308–1311. [Google Scholar]
  • Paglia D.E., Valentine W.N., 1967, Studies on the quantitative and qualitative characterization of erythrocyte glutathion peroxidase. J. Lab. Clin. Med. 70, 158–168. [Google Scholar]
  • Paillard C., Le Roux F., Borrego J.J., 2004, Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477–498. [CrossRef] [EDP Sciences] [Google Scholar]
  • Parrish C.C., 1999, Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In, Arts M.T., Wainman B.C. (Eds.), Lipids in Freshwater Ecosystems, New York, Springer-Verlag, pp. 5–20 [Google Scholar]
  • Pernet F., Bricelj V.M., Cartier S., 2006a, Lipid class dynamics during larval ontogeny of sea scallops, Placopecten magellanicus, in relation to metamorphic success and response to antibiotics. J. Exp. Mar. Biol. Ecol. 329, 265–280. [CrossRef] [Google Scholar]
  • Pernet F., Bricelj V.M., Parrish C.C., 2005, Effect of varying dietary levels of omega 6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 327, 115–133. [CrossRef] [Google Scholar]
  • Pernet F., Pelletier C.J., Milley J., 2006b, Comparison of three solid-phase extraction methods for fatty acid analysis of lipid fractions in tissues of marine bivalves. J. Chromatogr. A 1137, 127–137. [CrossRef] [PubMed] [Google Scholar]
  • Plante S., Pernet F., Hache R., Ritchie R., Ji B., McIntosh D., 2007, Ontogenetic variations in lipid class and fatty acid composition of haddock larvae Melanogrammus aeglefinus in relation to changes in diet and microbial environment. Aquaculture 263, 107–121. [CrossRef] [Google Scholar]
  • Prado S., Romalde J.L., Barja J.L., 2010, Review of probiotics for use in bivalve hatcheries. Vet. Microbiol. 145, 187–197. [CrossRef] [PubMed] [Google Scholar]
  • Regoli F., Nigro M., Benedetti M., Fattorini D., Gorbi S., 2005, Antioxidant efficiency in early life stages of the Antarctic silverfish, Pleuragramma antarcticum, responsiveness to pro-oxidant conditions of platelet ice and chemical exposure. Aquat. Toxicol. 75, 43–52. [CrossRef] [PubMed] [Google Scholar]
  • Rico-Villa B., Le Coz J.R., Mingant C., Robert R., 2006, Influence of phytoplankton diet mixtures on microalgae consumption, larval developement and settlement of the Pacific oyster Crassostrea gigas (Thunberb). Aquaculture 256, 377–388. [CrossRef] [Google Scholar]
  • Samain J.F., Degremont L., Soletchnik P., Haure J., Bedier E., Ropert M., Moal J., Huvet A., Bacca H., Van Wormhoudt A., Delaporte M., Costil K., Pouvreau S., Lambert C., Boulo V., Soudant P., Nicolas J.L., Le Roux F., Renault T., Gagnaire B., Geret F., Boutet I., Burgeot T., Boudry P., 2007, Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268, 227–243. [CrossRef] [Google Scholar]
  • Schmiel D.H., Miller V.L., 1999, Bacterial phospholipases and pathogenesis. Microb. Infect. 1, 1103–1112. [CrossRef] [Google Scholar]
  • Sewell M.A., 2005, Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133–142. [CrossRef] [Google Scholar]
  • Smith W.L., Murphy R.C., 2003, The eicosanoids, cyclooxygenase, lipoxygenase, and epoxygenase pathways. In: Vance D.E., Vance J.E. (Eds.), Biochemistry of lipids, lipoproteins and membranes, Vol. 36, Amsterdam, Elsevier Science, pp. 341–371. [Google Scholar]
  • Testa J., Daniel L.W., Kreger A.S., 1984, Extracellular Phospholipase A2 and Lysophospholipase Produced by Vibrio vulnificus. Infect. Immunol. 45, 458–463. [Google Scholar]
  • Torkildsen L., Lambert C., Nylund A., Magnesen T., Bergh O., 2005, Bacteria associated with early life stages of the great scallop, Pecten maximus, impact on larval survival. Aquac. Int. 13, 575–592. [Google Scholar]
  • Tubiash H.S., Chanley P.E., Leifson E., 1965, Bacillary necrosis, a disease of larval and juvenile bivalve mollusks. J. Bacteriol. 90, 1036–1044. [PubMed] [Google Scholar]
  • Wang S.L., Peatman E., Liu H., Bushek D., Ford S.E., Kucuktas H., Quilang J., Li P., Wallace R., Wang Y.P., Guo X.M., Liu Z.J., 2010, Microarray analysis of gene expression in eastern oyster (Crassostrea virginica) reveals a novel combination of antimicrobial and oxidative stress host responses after dermo (Perkinsus marinus) challenge. Fish Shellfish Immunol. 29, 921–929. [CrossRef] [PubMed] [Google Scholar]
  • Ward J.E., Langdon C.J., 1986, Effects of the ectoparasite Boonea (Odostomia) impressa (Say) Gastropoda pyramidellidae, on the growth rate, filtration rate and valve movements of the host Crassostrea virginica (Gmelin). J. Exp. Mar. Biol. Ecol. 99, 163–180. [CrossRef] [Google Scholar]
  • Widdows J., Hawkins A.J.S., 1989, Partitioning of rate of heat dissipation by Mytilus edulis into maintenance, feeding, and growth components. Physiol. Zool. 62, 764–784. [Google Scholar]
  • Yonetani T., 1967, Cytochrome oxidase, beef heart. Methods Enzymol. 10, 332–335. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.