Free Access
Aquat. Living Resour.
Volume 24, Number 3, July-September 2011
Page(s) 261 - 271
Published online 14 June 2011
  • Bailey D.M., Peck L.S., Bock C., Pörtner H.O., 2003, High-energy phosphate metabolism during exercise and recovery in temperate and Antarctic scallops: an in vivo P-31-NMR study. Physiol. Biochem. Zool. 76, 622–633. [CrossRef] [PubMed] [Google Scholar]
  • Brokordt K.B., Himmelman J.H., Guderley H., 2000a, Effect of reproduction on escape responses and muscle metabolic capacities in the scallop Chlamys islandica Müller 1776. J. Exp. Mar. Biol. Ecol. 251, 205–225. [CrossRef] [PubMed] [Google Scholar]
  • Brokordt K.B., Himmelman J.H., Nusetti O., Guderley H., 2000b, Reproductive investment reduces recuperation from escape responses in the tropical scallop Euvola ziczac. Mar. Biol. 137, 857–865. [CrossRef] [Google Scholar]
  • Brokordt K.B., Fernandez M., Gaymer C., 2006, Domestication reduces the capacity to escape from predators. J. Exp. Mar. Biol. Ecol. 329, 11–19. [CrossRef] [Google Scholar]
  • Brown M.R., 1991, The amino acid and sugar composition of 16 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 145, 79–99. [CrossRef] [Google Scholar]
  • Brown M.R., Miller K.A., 1992, The ascorbic acid content of eleven species of microalgae used in mariculture. J. Appl. Physiol. 4, 205–215. [Google Scholar]
  • Brown M.R., Jeffrey S.W., Volkman J.K., Dunstan G.A., 1997, Nutritional properties of microalgae for mariculture. Aquaculture 151, 315–331. [CrossRef] [Google Scholar]
  • Brown M.R., 2002, Nutritional value of microalgae in aquaculture. In: Cruz-Suarez L.E., Ricque-Marie D., Tapia-Salazar M., Gaxiola-Cortes M.G., Simoes N. (Eds.), Avances en Nutricion acuicola VI. Memorias del VI symposium internacional de nutricion acuicola. 3–6 Sept. 2002 Cancun, Quintata Roo, México, pp. 281–292. [Google Scholar]
  • Chih P.C., Ellington W.S., 1986, Control of glycolysis during contractile activity in the phasic adductor muscle of the bay scallop, Argopecten irradians concentricus: identification of potential sites of regulation and a consideration of the control of octopine dehydrogenase activity. Physiol. Zool. 59, 563–573. [Google Scholar]
  • Chu F.E., Webb K.L., 1984, Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster, Crassostrea virginica. Lipids 19, 815–820. [CrossRef] [Google Scholar]
  • Delaporte M., Soudant P., Moal J., Lambert C., Quéré C., Miner P., Choquet G., Paillard C., Samain J.-F., 2003, Effect of a mono-specific algal diet on immune functions in two bivalve species – Crassostrea gigas and Ruditapes philippinarum. J. Exp. Biol. 206, 3053–3064. [CrossRef] [PubMed] [Google Scholar]
  • De Moreno J.E.A., Moreno V.J., Brenner R.R., 1976, Lipid metabolism of the yellow clam, Mesodesma mactroides: 2-Polyunsaturated fatty acid metabolism. Lipids 11, 561–566. [CrossRef] [PubMed] [Google Scholar]
  • Enright C.T., Newkirk G.F., Craigie J.S., Castell J.D., 1986, Evaluation of phytoplankton as diet for juvenile Ostrea edulis L. J. Exp. Mar. Biol. Ecol. 96, 1–13. [CrossRef] [Google Scholar]
  • Farias A., Uriate I., 2006, Nutrition in Pectinids. In: Shumway S., Parsons G.J. (Eds.), Scallops: Biology, Ecology and Aquaculture, Amsterdam, Elsevier, pp. 521–542. [Google Scholar]
  • Fleury P.G., Janssoone X., Nadeau M., Guderley H., 2005, Force production during escape responses: sequential recruitment of the phasic and tonic portions of the adductor muscle in juvenile sea scallop, Placopecten magellanicus (Gmelin). J. Shellfish Res. 24, 905–911. [Google Scholar]
  • Fuller S.J., Randle P.J., 1984, Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal muscle mitochondria. Biochem. J. 219, 635–646. [PubMed] [Google Scholar]
  • Graham M., 1987, The solubility of oxygen in physiological salines. Fish Physiol. Biochem. 4, 1–4. [CrossRef] [PubMed] [Google Scholar]
  • Guderley H.E., Rojas F.M., Nusetti O.A., 1995, Metabolic specialization of mitochondria from scallop phasic muscles. Mar. Biol. 122, 409–416. [CrossRef] [Google Scholar]
  • Guderley H., Janssoone X., Nadeau M., Bourgeois M., Pérez H., 2008a, Force recordings during escape responses by Placopecten magellanicus (Gmelin): seasonal changes in the impact of handling stress. J. Exp. Mar. Biol. Ecol. 355, 85–94. [CrossRef] [Google Scholar]
  • Guderley H., Kraffe E., Bureau W., Bureau D.P., 2008b, Dietary fatty acid composition changes mitochondrial phospholipids and oxidative capacities in rainbow trout red muscle. J. Comp. Physiol. B 178, 385–399. [CrossRef] [PubMed] [Google Scholar]
  • Himmelman J.H., Guderley H.E., Duncan P.F., 2009, Responses of the saucer scallop Amusium balloti to potential predators. J. Exp. Mar. Biol. Ecol. 378, 58–61. [CrossRef] [Google Scholar]
  • Kraffe E., Tremblay R., Belvin S., LeCoz J.R., Marty Y., Guderley H., 2008, Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar. Biol. 156, 25–38. [CrossRef] [Google Scholar]
  • Kraffe E., Grall J., Palacios E., Guerra C., Soudant P., Marty Y., 2010, Occurrence of the cis-4,7,10,trans-13-22:4 fatty acid in the family Pectinidae (Mollusca: Bivalvia). Lipids 45, 437–444. [CrossRef] [PubMed] [Google Scholar]
  • Lafrance M.L., Guderley H., Cliche G., 2002, Low temperature but not air exposure slows the recuperation of juvenile scallops, Placopecten magellanicus, from exhausting escape responses. J. Shellfish Res. 21, 605–618. [Google Scholar]
  • Legault C., Himmelman J.H., 1993, Relation between escape behaviour of benthic marine invertebrates and the risk of predation. J. Exp. Mar. Biol. Ecol. 170, 55–74. [CrossRef] [Google Scholar]
  • Lowry H., Rosebough N., Farr A., Randall R., 1951, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 263–275. [Google Scholar]
  • Mackay J., Shumway S.E., 1980, Factors affecting oxygen consumption in the scallop Chlamys delicatula (Hutton). Ophelia 19, 19–26. [Google Scholar]
  • Martínez G., Aguilera C., Mettifago L., 2000, Interactive effects of diet and temperature on reproductive conditioning of Argopecten purpuratus (Lamarck 1819) broodstock. Aquaculture 183, 149–159. [CrossRef] [Google Scholar]
  • Marty Y., Delaunay F., Moal J., Samain J.F., 1992, Changes in the fatty acid composition of the scallop Pecten maximus (L.) during larval development. J. Exp. Mar. Biol. Ecol. 163, 221–234. [CrossRef] [Google Scholar]
  • Muleme H.M., Walpole A.C., Staples J.F., 2006, Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol. Biochem. Zool. 79, 474–483. [CrossRef] [PubMed] [Google Scholar]
  • Pérez H.M., Janssoone X., Guderley H., 2008, Tonic contractions allow metabolic recuperation of the adductor muscle during escape responses of giant scallop Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 360, 78–84. [CrossRef] [Google Scholar]
  • Phillips R., Ursell T., Wiggins P., Sens P., 2009, Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385. [CrossRef] [PubMed] [Google Scholar]
  • Pirini M., Manuzzi M.P., Pagliarani A., Trombetti F., Borgatti A.R., Ventrella V., 2007, Changes in fatty acid composition of Mytilus galloprovincialis (Lamarck) fed on microalgal and wheat germ diets. Comp. Biochem. Physiol. B 147, 616–626. [CrossRef] [Google Scholar]
  • Soudant P., Marty M., Moal J., Robert R., Quéré C., Le Coz J.R., Samain J.F., 1996, Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143, 361–378. [CrossRef] [Google Scholar]
  • Soudant P., Marty Y., Moal J., Masski H., Samain J.F., 1998, Fatty acid composition of polar lipid classes during the larval development of scallop Pecten maximus (L.). Comp. BIOCHEM. Physiol. 121A, 279–288. [Google Scholar]
  • Thompson R.J., Livingstone D.R., de Zwaan A., 1980, Physiological and biochemical aspects of valve snap and valve closure responses in the giant scallop Placopecten magellanicus. I. Physiology. J. Comp. Physiol. 137, 97–104. [Google Scholar]
  • Tremblay I., Guderley H., Fréchette M., 2006, Swimming performance, metabolic rates, and their correlates in the Iceland scallop Chlamys islandica. Physiol. Biochem. Zool. 79, 1046–1057. [CrossRef] [PubMed] [Google Scholar]
  • Volkman J.K., Jeffrey S.W., Nichols P.D., Rogers G.I., Garland C.D., 1989, Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. [CrossRef] [Google Scholar]
  • Webb K.L., Chu F.E.,1983, Phytoplankton as a food source for bivalve larvae. In: Pruder G.D., Langdon C.J., Conklin D.E. (Eds.), Proc. 2nd Internat. Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition, Louisiana State University, Baton Rouge, pp. 272–291. [Google Scholar]
  • Whyte J.N.C., 1987, Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60, 231–241. [CrossRef] [Google Scholar]
  • Wilkens L.A., 1991, Neurobiology of the scallop (Pecten ziczac): 1.Starfish-mediated escape behaviors. Proc. R. Soc. London B 211, 341–372. [CrossRef] [Google Scholar]
  • Zhang M., Mileykovskaya E., Dowhan W., 2002, Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 277, 43553–43556. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.