Aquat. Living Resour.
Volume 35, 2022
Topical Issue - NORA 4 - Native Oyster Restoration Alliance 4th Conference
Article Number 18
Number of page(s) 12
Published online 30 November 2022
  • Ardren WR, Kapuscinski AR. 2002. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol Ecol 12: 35–49. [CrossRef] [Google Scholar]
  • Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, Defeo O, Edgar GJ, Hancock B, Kay MC, Lenihan HS, Luckenbach MW, Toropova CL, Zhang G, Guo X. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61: 107–116. [CrossRef] [Google Scholar]
  • Berghahn R, Ruth M. 2005. The disappearance of oysters from the Wadden Sea: a cautionary tale for no-take zones. Aquat Conserv 15: 91–104. [Google Scholar]
  • Bromley C, McGonigle C, Ashton EC, Roberts D. 2016. Bad moves: pros and cons of moving oysters – a case study of global translocations of Ostrea edulis Linnaeus, 1758 (Mollusca: Bivalvia). Ocean Coast Manag 122: 103–115. [CrossRef] [Google Scholar]
  • Colsoul B, Boudry P, Pérez-Parallé ML, Bratoš Cetinić A, Hugh-Jones T, Arzul I, Mérou N, Wegner KM, Peter C, Merk V, Pogoda B. 2021. Sustainable large-scale production of European flat oyster (Ostrea edulis) seed for ecological restoration and aquaculture: a review. Rev Aquacult 13: 1423–1468. [CrossRef] [Google Scholar]
  • Colsoul B, Pouvreau S, Di Poi C, Pouil S, Merk V, Peter C, Boersma M, Pogoda B. 2020. Addressing critical limitations of oyster (Ostrea edulis) restoration: Identification of nature-based substrates for hatchery production and recruitment in the field. Aquatic Conserv: Mar Freshw Ecosyst 30, 2101–2115. [CrossRef] [Google Scholar]
  • Comps M, Tige G, Grizel H. 1980. An ultrastructural study of a protistan parasite of the flat oyster Ostrea edulis. Compt Rend Acad Sci D 290: 383–384. [Google Scholar]
  • Coscia I, Chopelet J, Waples RS, Mann BQ, Mariani S. 2016. Sex change and effective population size: implications for population genetic studies in marine fish. Heredity 117: 251–258. [CrossRef] [PubMed] [Google Scholar]
  • Dakin EE, Avise JC. 2004. Microsatellite null alleles in parentage analysis. Heredity 93: 504–509. [CrossRef] [PubMed] [Google Scholar]
  • Da Silva PM, Fuentes J, Villalba A. 2009. Differences in gametogenic cycle among strains of the European flat oyster Ostrea edulis and relationship between gametogenesis and bonamiosis. Aquaculture 287: 253–265. [CrossRef] [Google Scholar]
  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resources 14: 209–214. [CrossRef] [Google Scholar]
  • Fariñas-Franco JM, Pearce B, Mair JM, Harries DB, MacPherson RC, Porter JS, Reimer PJ, Sanderson WG. 2018. Missing native oyster (Ostrea edulis L.) beds in a European marine protected area: should there be widespread restorative management? Biol Conserv 221: 293–311. [CrossRef] [Google Scholar]
  • Frankham R. 2015. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24: 2610–2618. [CrossRef] [PubMed] [Google Scholar]
  • Frankham R, Bradshaw CJ, Brook BW. 2014. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170: 56–63. [CrossRef] [Google Scholar]
  • Gonzalez-Wanguemert M, Costa J, Basso L, Duarte C, Serrão E, Hendriks I. 2014. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Medit Mar Sci 16: 31. [Google Scholar]
  • Goudet J. 2005. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5: 184–186. [Google Scholar]
  • Grant WS, Jasper J, Bekkevold D, Adkison M. 2017. Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates. Rev Fish Biol Fisheries 27, 615–649. [CrossRef] [Google Scholar]
  • Grizel H. 1985. Etude des recentes epizooties de l’huitre plate Ostrea Edulis Linne et de leur impact sur l’ostreiculture bretonne. Thesis 232. [Google Scholar]
  • Gu Z, Gu L, Eils R, Schlesner M, Brors B. 2014. circlize implements and enhances circular visualization in R. Bioinformatics 30: 2811–2812. [CrossRef] [PubMed] [Google Scholar]
  • Gutierrez AP, Turner F, Gharbi K, Talbot R, Lowe NR, Peñaloza C, McCullough M, Prodöhl PA, Bean TP, Houston RD. 2017. Development of a medium density combined-species SNP Array for Pacific and European oysters (Crassostrea gigas and Ostrea edulis). G3 7: 2209–2218. [CrossRef] [Google Scholar]
  • Harrang E. 2013. Apport des informations moléculaires et cellulaires pour la caractérisation de la résistance de l’huître plate européenne vis-à-vis de la bonamiose, et pour la détection de signatures de la sélection naturelle. Thesis. [Google Scholar]
  • Harrang E, Heurtebise S, Faury N, Robert M, Arzul I, Lapègue S. 2015. Can survival of European flat oysters following experimental infection with Bonamia ostreae be predicted using QTLs? Aquaculture 448: 521–530. [CrossRef] [Google Scholar]
  • Hedgecock D, Launey S, Pudovkin AI, Naciri Y, Lapègue S, Bonhomme F. 2007. Small effective number of parents (Nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea edulis. Mar Biol 150: 1173–1182. [CrossRef] [Google Scholar]
  • Hedgecock D, Pudovkin AI. 2011. Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. BMS 87: 971–1002. [CrossRef] [Google Scholar]
  • Hill WG. 1981. Estimation of effective population size from data on linkage disequilibrium. Genetical Research (UK) 38: 209–216. [CrossRef] [Google Scholar]
  • His E, Beiras R, Seaman MNL. 1999. The assessment of marine pollution - bioassays with bivalve embryos and larvae. Adv Mar Biol 37: 1–178. [CrossRef] [Google Scholar]
  • Jones AG, Small CM, Paczolt KA, Ratterman NL. 2010. A practical guide to methods of parentage analysis. Mol Ecol Resour 10: 6–30. [CrossRef] [PubMed] [Google Scholar]
  • Kalinowski ST, Taper ML. 2006. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7: 991–995. [CrossRef] [Google Scholar]
  • Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16: 1099–1106. [CrossRef] [PubMed] [Google Scholar]
  • Kamermans P, Saurel C. 2022. Interacting climate change effects on mussels (Mytilus edulis and M. galloprovincialis) and oysters (Crassostrea gigas and Ostrea edulis): experiments for bivalve individual growth models. Aquat Living Resour 35: 1. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kitada S. 2020. Lessons from Japan marine stock enhancement and sea ranching programmes over 100 years. Rev Aquacult 12: 1944–1969. [Google Scholar]
  • Lallias D, Stockdale R, Boudry P, Beaumont AR, Lapègue S. 2009. Characterization of 27 microsatellite loci in the European flat oyster Ostrea edulis. Mol Ecol Resour 9: 960–963. [CrossRef] [PubMed] [Google Scholar]
  • Lallias D, Boudry P, Lapègue S, King JW, Beaumont AR. 2010. Strategies for the retention of high genetic variability in European flat oyster (Ostrea edulis) restoration programmes. Conserv Genet 11: 1899–1910. [Google Scholar]
  • Lallias D, Taris N, Boudry P, Bonhomme F, Lapègue S. 2010. Variance in the reproductive success of flat oyster Ostrea edulis L. assessed by parentage analyses in natural and experimental conditions. Genet Res 92: 175–187. [CrossRef] [PubMed] [Google Scholar]
  • Launey S. 2002. Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J Hered 93: 331–351. [CrossRef] [PubMed] [Google Scholar]
  • Lotze HK. 2005. Radical changes in the Wadden Sea fauna and flora over the last 2,000 years. Helgoland Mar Res 59: 71–83. [CrossRef] [Google Scholar]
  • Lynch M, O’Hely M. 2001. Captive breeding and the genetic fitness of natural populations. Conserv Genet 2: 363–378. [CrossRef] [MathSciNet] [Google Scholar]
  • Lynch M, Ritland K. 1999. Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753–1766. [CrossRef] [PubMed] [Google Scholar]
  • Maneiro V, Santos Y, Pazos AJ, Silva A, Torres-Corral Y, Sánchez JL, Pérez-Parallé ML. 2020. Effects of food ration, water flow rate and bacteriological levels of broodstock on the reproductive conditioning of the European flat oyster (Ostrea edulis, Linnaeus 1758). Aquac Rep 18: 100–412. [Google Scholar]
  • Matthiessen GC. 2008. Oyster culture. John Wiley & Sons. [Google Scholar]
  • Naciri Y, Vigouroux Y, Dallas J, Desmarais E, Delsert C, Bonhomme F. 1995. Identification and Inheritance of (GA/TC) n and (AC/GT) n Repeats in the European Flat Oyster Ostrea Edulis (L.). Mol Mar Biol Biotechnol 4: 83–89. [PubMed] [Google Scholar]
  • Naciri-Graven Y, Haure J, Gérard A, Baud J-P. 1999. Comparative growth of Bonamia ostreae resistant and wild flat oyster Ostrea edulis in an intensive system: II. Second year of the experiment. Aquaculture 171: 195–208. [CrossRef] [Google Scholar]
  • Nascimento-Schulze JC, Bean TP, Houston RD, Santos EM, Sanders MB, Lewis C, Ellis RP. 2021. Optimizing hatchery practices for genetic improvement of marine bivalves. Rev Aquacult 1753–5131. [Google Scholar]
  • Nielsen P, Petersen JK. 2019. Flat oyster fishery management during a time with fluctuating population size. Aquat Living Resour 32: 22. [CrossRef] [EDP Sciences] [Google Scholar]
  • Olsen OT. 1883. The piscatorial atlas of the North Sea, English and St. George’s channels: illustrating the fishing ports, boats, gear, species of fish (how, where and when caught), and other information concerning fish and fisheries. OT Olsen. [Google Scholar]
  • Pauly D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol Evol 10: 430. [PubMed] [Google Scholar]
  • Pogoda B, Brown J, Hancock B, Preston J, Pouvreau S, Kamermans P, Sanderson W, von Nordheim H. 2019. The Native Oyster Restoration Alliance (NORA) and the Berlin Oyster Recommendation: bringing back a key ecosystem engineer by developing and supporting best practice in Europe. Aquat Living Resour 32: 13. [CrossRef] [EDP Sciences] [Google Scholar]
  • Reece KS. 2004. Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios. J Heredity 95: 346–352. [CrossRef] [Google Scholar]
  • Reed DH, Frankham R. 2003. Correlation between fitness and genetic diversity. Conserv Biol 17: 230–237. [Google Scholar]
  • Reynaga-Franco FJ, Grijalva-Chon J-M, Castro-Longoria R, Barraza-Guardado R-H, Arreola-Lizárraga J-A, Chávez-Villalba J. 2020. Designing a protocol to evaluate Crassostrea gigas spat production in hatcheries: Identification of critical aspects. Aquacult Eng 89: 102055. [CrossRef] [Google Scholar]
  • Ryman N, Laikre L. 1991. Effects of supportive breeding on the genetically effective population size. Conserv Biol 5: 325–329. [CrossRef] [Google Scholar]
  • Sas H, Deden B, Kamermans P, zu Ermgassen PSE, Pogoda B, Preston J, Helmer L, Holbrook Z, Arzul I, Have T, Villalba A, Colsoul B, Lown A, Merk V, Zwerschke N, Reuchlin E. 2020. Bonamia infection in native oysters (Ostrea edulis) in relation to European restoration projects. Aquatic Conserv: Mar Freshw Ecosyst 30: 2150–2162. [CrossRef] [Google Scholar]
  • Smouse RPP, Peakall R. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28: 2537–2539. [CrossRef] [PubMed] [Google Scholar]
  • Thurstan RH, Hawkins JP, Raby L, Roberts CM. 2013. Oyster (Ostrea edulis) extirpation and ecosystem transformation in the Firth of Forth, Scotland. J Nat Conserv 21: 253–261. [Google Scholar]
  • Toro J, Newkirk G. 1990. Divergent selection for growth rate in the European oyster Ostrea edulis response to selection and estimation of genetic parameters. Mar Ecol Prog Ser 62: 219–227. [CrossRef] [Google Scholar]
  • van den Brink AM, Maathuis MAM, Kamermans P. 2020. Optimization of off-bottom spat collectors for restoration and production of the European flat oyster (Ostrea edulis) in Dutch coastal waters. Aquat Conserv: Mar Freshw Ecosyst 30: 2087–2100. [CrossRef] [Google Scholar]
  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [CrossRef] [Google Scholar]
  • Varney RL, Wilbur AE. 2020. Analysis of genetic variation and inbreeding among three lines of hatchery-reared Crassostrea virginica broodstock. Aquaculture 527: 735452. [CrossRef] [Google Scholar]
  • Vera M, Bello X, Álvarez-Dios J-A, Pardo BG, Sánchez L, Carlsson J, Carlsson JEL, Bartolomé C, Maside X, Martinez P. 2015. Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): transposable elements and short tandem repeats. Mar Genom 24: 335–341. [CrossRef] [Google Scholar]
  • Wang J. 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979. [CrossRef] [PubMed] [Google Scholar]
  • Wang J. 2011. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resourc 11: 141–145. [CrossRef] [PubMed] [Google Scholar]
  • Waples RS. 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7: 167. [CrossRef] [Google Scholar]
  • Waples RS, Do CHI. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3: 244–262. [CrossRef] [Google Scholar]
  • Waples RS, Hindar K, Karlsson S, Hard JJ. 2016, Evaluating the Ryman–Laikre effect for marine stock enhancement and aquaculture. Curr Zool 62: 617–627. [CrossRef] [PubMed] [Google Scholar]
  • Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA. 2011. Assessing the benefits and risks of translocations in changing environments: a genetic perspective: Translocations in changing environments. Evolut Appl 4: 709–725. [CrossRef] [Google Scholar]
  • Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 1358–1370. [Google Scholar]
  • zu Ermgassen PSE, Bonačić K, Boudry P, Bromley CA, Cameron TC, Colsoul B, Coolen JWP, Frankić A, Hancock B, Have TM, Holbrook Z, Kamermans P, Laugen AT, Nevejan N, Pogoda B, Pouvreau S, Preston J, Ranger CJ, Sanderson WG, Sas H, Strand Å, Sutherland WJ. 2020. Forty questions of importance to the policy and practice of native oyster reef restoration in Europe. Aquatic Conserv: Mar Freshw Ecosyst 30: 2038–2049. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.