Open Access
Aquat. Living Resour.
Volume 34, 2021
Article Number 7
Number of page(s) 10
Published online 02 April 2021
  • Araki H, Cooper B, Blouin MS. 2009. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol Lett 5: 621–624. [PubMed] [Google Scholar]
  • Aykanat T, Johnston SE, Cotter D, Cross TF, Poole R, Prodőhl PA, Reed T, Rogan G, McGinnity P, Primmer CR. 2014. Molecular pedigree reconstruction and estimation of evolutionary parameters in a wild Atlantic salmon river system with incomplete sampling: a power analysis. BMC Evol Biol 14: 68. [PubMed] [Google Scholar]
  • Beacham TD, Wallace C, Jonsen K, McIntosh B, Candy JR, Willis D, Lynch C, Moore J-S., Bernatchez L, Withler RE. 2019. Comparison of coded-wire tagging with parentage-based tagging and genetic stock identification in a large-scale coho salmon fisheries application in British Columbia, Canada. Evol Appl 12: 230–254. [PubMed] [Google Scholar]
  • Boichard D, Barbotte L, Genestout L. 2014. AccurAssign, software for accurate maximum-likelihood parentage assignment, in: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, p. 397. [Google Scholar]
  • Evans ML, Johnson MA, Jacobson D, Wang J, Hogansen M, O'Malley KG. 2015. Evaluating a multi-generational reintroduction program for threatened salmon using genetic parentage analysis. Can J Fish Aquat Sci 73: 844–852. [Google Scholar]
  • Grandjean F, Verne S, Cherbonnel C, Richard A. 2009. Fine-scale genetic structure of Atlantic salmon (Salmo salar) using microsatellite markers: effects of restocking and natural recolonization. Freshw Biol 54: 417–433. [Google Scholar]
  • Griot R, Allal F, Brard‐Fudulea S, Morvezen R, Haffray P, Phocas F, Vandeputte M. 2020. APIS: An auto-adaptive parentage inference software that tolerates missing parents. Mol Ecol Resour 20: 579–590. [Google Scholar]
  • Hess MA, Rabe CD, Vogel JL, Stephenson JJ, Nelson DD, Narum SR. 2012. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon. Mol Ecol 21: 5236–5250. [PubMed] [Google Scholar]
  • Jamieson A. 1965. The genetics of transferrins in cattle. Heredity 20: 419–441. [PubMed] [Google Scholar]
  • Jonsson B, Jonsson N, Hansen LP. 2003. Atlantic salmon straying from the River Imsa. J Fish Biol 62: 641–657. [Google Scholar]
  • Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16: 1099–1106. [CrossRef] [PubMed] [Google Scholar]
  • Kuparinen A, Keith DM, Hutchings JA. 2014. Allee effect and the uncertainty of population recovery. Conserv Biol 28: 790–798. [PubMed] [Google Scholar]
  • McGinnity P, Prodhöl P, Ferguson A, Hynes R, O'Maoileidigh N, Baker N, Cotter D, O'Hea B, Cooke D, Rogan G, Taggart J, Cross T. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc B Biol Sci 270: 2443–2450. [Google Scholar]
  • Paterson S, Piertney SB, Knox D, Gilbey J, Verspoor E. 2004. Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Mol Ecol Notes 4: 160–162. [Google Scholar]
  • Perrier CP, Evanno GE, Belliard JB, Guyomard RG, Baglinière J-LB-L. 2009. Natural recolonization of the Seine River by Atlantic salmon (Salmo salar) of multiple origins. Can J Fish Aquat Sci 67: 1–4. [Google Scholar]
  • Slettan A, Olsaker I, Lie Ø. 1995. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim Genet 26: 281–282. [CrossRef] [PubMed] [Google Scholar]
  • Steele CA, Hess M, Narum S, Campbell M. 2019. Parentage‐based tagging: reviewing the implementation of a new tool for an old problem. Fisheries 44: 412–422. [Google Scholar]
  • Stephens PA, Sutherland WJ. 1999. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14: 401–405. [CrossRef] [PubMed] [Google Scholar]
  • Thibault M. 1994. Aperçu historique sur l'évolution des captures et des stocks. In: Le Saumon Atlantique, Biologie et Gestion de La Ressource. Guegen, J.C. & Prouzet, P., Plouzané, Ifremer, pp. 173–183. [Google Scholar]
  • Valiente AG, Beall E, Garcia‐Vazquez E. 2010. Population genetics of south European Atlantic salmon under global change. Global Change Biol 16: 36–47. [Google Scholar]
  • Vandeputte M. 2012. An accurate formula to calculate exclusion power of marker sets in parentage assignment. Genet Sel Evol 44: 36. [Google Scholar]
  • Vandeputte M, Haffray P. 2014. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front Genet 5: 432. [PubMed] [Google Scholar]
  • Vasemägi A, Gross R, Paaver T, Kangur M, Nilsson J, Eriksson L-O. 2001. Identification of the origin of an Atlantic salmon (Salmo salar L.) population in a recently recolonized river in the Baltic Sea. Mol Ecol 10: 2877–2882. [PubMed] [Google Scholar]
  • Wang J. 2012. Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 191: 183–194. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.