Free Access
Issue
Aquat. Living Resour.
Volume 34, 2021
Article Number 18
Number of page(s) 15
DOI https://doi.org/10.1051/alr/2021017
Published online 16 July 2021
  • Able KW, Fahay MP. 2010. Ecology of estuarine fishes: temperate waters of the western North Atlantic. Baltimore: Johns Hopkins University Press. [Google Scholar]
  • Allen LG. 1982. Seasonal abundance, composition, and productivity of the littoral zone assemblage in upper Newport Bay, California. Fish Bull 80: 769–790. [Google Scholar]
  • Álvarez I, Catalán IA, Jordi A, Alemany F, Basterretxea G. 2015. Interaction between spawning habitat and coastally steered circulation regulate larval fish retention in a large shallow temperate bay. Estuar Coast Shelf Sci 167: 37789. [Google Scholar]
  • Baptista V, Leitão F, Morais P, Teodósio MA, Wolanski E. 2020. Modelling the ingress of a temperate fish larva into a nursery coastal lagoon. Estuar Coast Shelf Sci 235: 106601. [Google Scholar]
  • Beck MW, Heck KL, Able KM, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51: 633–641. [Google Scholar]
  • Boccanfuso JJ, Abud EA, Berrueta M. 2019. Improvement of natural spawning of black flounder, Paralichthys orbignyanus (Valenciennes, 1839) by photothermal and salinity conditioning in recirculating aquaculture system. Aquaculture 502: 134–141. [Google Scholar]
  • Braverman MS, Acha EM, Gagliardini DA, Rivarossa M. 2009. Distribution of whitemouth croaker (Micropogonias furnieri, Desmarest 1823) larvae in the Río de la Plata estuarine front. Estuar Coast Shelf Sci 82: 557–565. [Google Scholar]
  • Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27: 325–349. [Google Scholar]
  • Bye VJ. 1984. The role of environmental factors in the timing of reproductive cycles, in: Potts, G.W., Wooton, R.J. (Eds.), Fish Reproduction: Strategies and Tactics. London: Academic Press, pp. 187–205. [Google Scholar]
  • Chen WY, Lee MA, Lan KW, Gong GC. 2014. Distributions and assemblages of larval fish in the East China Sea during the northeasterly and southwesterly monsoon seasons of 2008. Biogeosciences 11: 547. [Google Scholar]
  • Clarke KR, Gorley RN. 2006. PRIMER v6.1.6. User Manual/Tutorial. Plymouth: PRIMER-E, Plymouth Marine Laboratory. [Google Scholar]
  • Costalago D, Tecchio S, Palomera I, Álvarez-Calleja I, Ospina-Álvarez A, Raicevich S. 2011. Ecological understanding for fishery management: condition and growth of anchovy late larvae during different seasons in the Northwestern Mediterranean. Estuar Coast Shelf Sci 93: 350–358. [Google Scholar]
  • Cowan Jr JH, Shaw RF. 2002. Recruitment. In ‘Fishery Science. The Unique Contributions of Early Life Stages’. (Eds LA Fuiman and RG Werner.) pp. 88–111. [Google Scholar]
  • Dahlberg MD. 1979. A review of survival rates of fish eggs and larvae in relation to impact assessments. Mar Fish Rev 41:1–12. [Google Scholar]
  • Denit K, Sponaugle S. 2004. Growth variation, settlement, and spawning of gray snapper across a latitudinal gradient. Trans Am Fish Soc 133: 1339–1355. [Google Scholar]
  • Dethlefsen V, von Westernhagen H, Tüg H, Hansen PD, Dizer H. 2001. Influence of solar ultraviolet-B on pelagic fish embryos: osmolality, mortality and viable hatch. Helgol Mar Res 55: 45–55. [Google Scholar]
  • Duffy‐Anderson JT, Busby MS, Mier KL, Deliyanides CM, Stabeno PJ. 2006. Spatial and temporal patterns in summer ichthyoplankton assemblages on the eastern Bering Sea shelf 1996–2000. Fish Oceanogr 15: 80–94. [Google Scholar]
  • Elliott M, Whitfield AK. 2011. Challenging paradigms in estuarine ecology and management. Estuar Coast Shelf Sci 94: 306–314. [Google Scholar]
  • Elliott M, Whitfield AK, Potter IC, Blaber SJ, Cyrus DP, Nordlie FG, Harrison TD. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish Fish 8: 241–268. [Google Scholar]
  • Ellis JR, Milligan SP, Readdy L, Taylor N, Brown MJ. 2012. Spawningand nursery grounds of selected fish species in UK waters. Sci Ser Tech Rep 147: 56. [Google Scholar]
  • Fage L. 1920. Engraulidae-Clupeidae. Report on the Danish Oceanographic Expeditions 1908-1910 to Mediterranean and Adjacent Seas. 2. Biology 137. [Google Scholar]
  • Faria A, Morais P, Chícharo MA. 2006. Ichthyoplankton dynamics in the Guadiana estuary and adjacent coastal area, South-East Portugal. Estuar Coast Shelf Sci 70: 85–97. [Google Scholar]
  • Feeley MW, Morley D, Costa AA, Barbera P, Hunt J, Switzer T, Burton M. 2018. Spawning migration movements of Mutton Snapper in Tortugas, Florida: Spatial dynamics within a marine reserve network. Fish Res 204: 209–223. [Google Scholar]
  • Fincham JI, Rijnsdorp AD, Engelhard GH. 2013. Shifts in the timing of spawning in sole linked to warming sea temperatures. J Sea Res 75: 69–76. [Google Scholar]
  • Fox CJ, McCloghrie P, Nash RD. 2009. Potential transport of plaice eggs and larvae between two apparently self-contained populations in the Irish Sea. Estuar Coast Shelf Sci 81: 381–389. [Google Scholar]
  • Froese R, Pauly D. (eds.) 2019. FishBase. [Version 12/2019] www.fishbase.org. [Google Scholar]
  • Fuentes CM, Gómez MI, Brown DR, Arcelus A, Espinach Ros A. 2016. Downstream passage of fish larvae at the Salto Grande Dam on the Uruguay River. River Res Appl 32: 1879–1889. [Google Scholar]
  • Garrido S, Santos AMP, dos Santos A, Ré P. 2009. Spatial distribution and vertical migrations of fish larvae communities off Northwestern Iberia sampled with LHPR and Bongo nets. Estuar Coast Shelf Sci 84: 463–475. [Google Scholar]
  • Genin A. 2004. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J Mar Sys 50: 3–20. [Google Scholar]
  • Grol MG, Nagelkerken I, Rypel AL, Layman CA. 2011. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia 165: 79–88. [Google Scholar]
  • Haddy JA, Pankhurst NW. 2000. The effects of salinity on reproductive development, plasma steroid levels, fertilisation and egg survival in black bream Acanthopagrus butcheri. Aquaculture 188: 115–131. [Google Scholar]
  • Han HS, Park YW, Kim JC, Ma CW. 2015. Ecological study of zooplankton community at Dangdong Bay in Gyeongsangnamdo, Korea. Korean J Environ Biol 33: 240–247. [Google Scholar]
  • Harada AE, Lindgren EA, Hermsmeier MC, Rogowski PA, Terrill E, Burton RS. 2015. Monitoring spawning activity in a southern California marine protected area using molecular identification of fish eggs. PloS ONE 10: e0134647. [Google Scholar]
  • Heyman WD, Kjerfve B. 2008. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bull Mar Sci 83: 531–551. [Google Scholar]
  • Hinrichsen HH, Lehmann A, Petereit C, Nissling A, Ustups D, Bergström U, Hüssy K. 2016. Spawning areas of eastern Baltic cod revisited: Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns. Prog Oceanogr 143: 13–25. [Google Scholar]
  • Hsieh HY, Lo WT, Wu LJ, Liu DC. 2012. Larval fish assemblages in the Taiwan Strait, western North Pacific: linking with monsoon‐driven mesoscale current system. Fish Oceanogr 21: 125–147. [Google Scholar]
  • Hufnagl M, Peck MA, Nash RD, Pohlmann T, Rijnsdorp AD. 2013. Changes in potential North Sea spawning grounds of plaice (Pleuronectes platessa L.) based on early life stage connectivity to nursery habitats. J Sea Res 84: 26–39. [Google Scholar]
  • Irigoien X, Huisman J, Harris RP. 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429: 863–867. [Google Scholar]
  • Jakobsen HH, Markager S. 2016. Carbon‐to‐chlorophyll ratio for phytoplankton in temperate coastal waters: seasonal patterns and relationship to nutrients. Limnol Oceanogr 61: 1853–1868. [Google Scholar]
  • Jiang M, Shen XQ, Chen LF. 2006. Relationship between with abundance distribution of fish eggs, larvae and environmental factors in the Changjiang Estuary and vicinity waters in spring. Mar Environ Res 25: 37–39. [Google Scholar]
  • Jung KY, Ro YJ. 2010. Stratification and destratification processes in the Kangjin Bay, South Sea, Korea. The Sea 15: 97–109. [Google Scholar]
  • Kakehi S, Takagi T, Okabe K, Takayanagi K. 2017. Circulation in a bay influenced by flooding of a river discharging outside the bay. Estuar Coast Shelf Sci 187: 204–215. [Google Scholar]
  • Kang YS, Chae YK, Lee HR. 2011. Variation of density stratification due to fresh water discharge in the Kwangyang Bay and Jinju Bay. J Korean Soc Coast Ocean Eng 23: 126–137. [Google Scholar]
  • Kim CK, Lee JT, Jang HS. 2010. Water circulation structure in the Chinju Bay of Korea. J Korean Soc Coast Ocean Eng 22: 215–223. [Google Scholar]
  • Kim JB, Ryu JH, Kim JK. 2009. Comparative analysis of fish community structure between eelgrass (Zostera marina L.) beds and an adjacent unvegetated area in southern Korea. Fish Aquat Sci 12: 60–69. [Google Scholar]
  • Kim JK, Choi JI, Chang DS, Na JT, Kim YU. 2003. Distribution of fish eggs, larvae and juveniles around the Youngsan River estuary. Kor J Fish Aquat Sci 36: 486–494. [Google Scholar]
  • Kim JK, Ryu JH. 2016. Distribution map of sea fishes in Korea. Busan: Maple publishing Co., p. 667. [Google Scholar]
  • Kim JK, Ryu JH, Kim JB, Lee WC, Kim HC, Moon SY, Kim HY. 2015. Growth of young sea bass Lateolabrax japonicus in the eelgrass beds of Gamak and Yeoja Bays in relation to environmental variables. Kor J Fish Aquat Sci 48: 920–928. [Google Scholar]
  • Kim JK, Ryu JH, Kim S, Lee DW, Choi KH, Oh TY, Hwang KS, Choi JH, Kim JN, Kwun HJ, Ji HS, Oh JN. 2011. An identification guide for fish eggs, larvae and juveniles of Korea. Hanguel Graphics Busan, p. 350. [Google Scholar]
  • Kwak SN, Park JM. 2014. Temporal and spatial variation in species composition and abundances of ichthyoplankton in Masan Bay. Korean J Ichthyol 26: 42–49. [Google Scholar]
  • Kwak SN, Huh SH, Kim HW. 2013. Temporal and spatial variations and species composition of ichthyoplanktons in a sea area, with the construction of artificial upwelling structure. Korean Soc Mar Environ Saf 19: 309–314. [Google Scholar]
  • Landaeta MF, López G, Suárez-Donoso N, Bustos CA, Balbontín F. 2012. Larval fish distribution, growth and feeding in Patagonian fjords: potential effects of freshwater discharge. Environ Biol Fishes 93: 73–87. [Google Scholar]
  • Laprise R, Pepin P. 1995. Factors influencing the spatio-temporal occurrence of fish eggs and larvae in a northern, physically dynamic coastal environment. Mar Ecol Prog Ser 122: 73–92. [Google Scholar]
  • Lasker R. 1975. The relation between inshore chlorophyll maximum layers and successful first feeding 1. Fish Bull 73:453. [Google Scholar]
  • Lee CW, Kim DY, Woo CS, Kim YS, Seo JP, Kwon HJ. 2015. Construction and operation of the national landslide forecast system using soil water index in Republic of Korea. J Korean Soc Hazard Mitig 15: 213–221. [Google Scholar]
  • Lee PY, Kang CK, Choi WJ, Yang HS. 2001. Seasonal variation of the quantity and quality of seston as diet available to suspension-feeders in Gosung and Kangjin bays of Korea. Korean J Fish Aquat Sci 34: 340–347. [Google Scholar]
  • Lee SJ, Kim JK, Ryu JH, Yu HJ, Ji HS, Im YJ. 2019. Molecular identification and morphological description of larvae for ten species of the family Pleuronectidae (Pleuronectiformes, PISCES) from Korea. J Korean Soc Fish Ocean Technol 55: 335–348. [Google Scholar]
  • Leggett WC, Deblois E. 1994. Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Neth J Sea Res 32: 119–134. [Google Scholar]
  • Lin HY, Chiu MY, Shih YM, Chen IS, Lee MA, Shao KT. 2016. Species composition and assemblages of ichthyoplankton during summer in the East China Sea. Cont Shelf Res 126: 64–78. [Google Scholar]
  • Livingston RJ, Lewis FG, Woodsum GC, Niu XF, Galperin B, Huang W, Christensen JD, Monaco ME, Battista TA, Klein CJ, Howell IV RL, Ray GL. 2000. Modelling oyster population response to variation in freshwater input. Estuar Coast Shelf Sci 50: 655–672. [Google Scholar]
  • Maes J, Van Damme S, Meire P, Ollevier F. 2004. Statistical modeling of seasonal and environmental influences on the population dynamics of an estuarine fish community. Mar Biol 145: 1033–1042. [Google Scholar]
  • Moon SY, Oh HJ, Soh HY. 2010. Seasonal variation of zooplankton communities in the southern coastal waters of Korea. Ocean Polar Res 32: 411–426. [Google Scholar]
  • Nahas EL, Jackson G, Pattiaratchi CB, Ivey GN. 2003. Hydrodynamic modelling of snapper Pagrus auratus egg and larval dispersal in Shark Bay, Western Australia: reproductive isolation at a fine spatial scale. Mar Ecol Prog Ser 265: 213–226. [Google Scholar]
  • Nelson JS, Grande TC, Wilson MV. 2016. Fishes of the World, 5th edition. New Jersey, NJ: John Wiley and Sons Inc., 386. [Google Scholar]
  • Newton A, Icely J, Cristina S, Brito A, Cardoso AC, Colijn F, Dalla-Riva S, Gertz F, Hansen J, Holmer M, Ivanova K, Leppäkoski E, Mocenni C, Mudge S, Murray N, Pejrup M, Razinkovas A, Reizopoulou S, Pérez-Ruzafa A, Schernewski G, Schubert H, Seeram L, Solidoro C, Viaroli P, Zaldívar JM. 2014. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar Coast Shelf Sci 140: 95–122. [Google Scholar]
  • Oh HJ, Lee YH, Yang JH, Kim SH. 2007. The characteristics of phytoplankton distributions related to the oceanographic conditions in the Southern Waters of the Korean in summer, 2004. Korean Asso Geogra Infor Studies 10: 40–48. [Google Scholar]
  • Okiyama M. 2014. An atlas of the early stage fishes in japan, second edition. Hadano: Tokai Univ Press, p. 1639. [Google Scholar]
  • Ospina-Álvarez A, Palomera I, Parada C. 2012. Changes in egg buoyancy during development and its effects on the vertical distribution of anchovy eggs. Fish Res 117: 86–95. [Google Scholar]
  • Ospina-Alvarez A, Catalán IA, Bernal M, Roos D, Palomera I. 2015. From egg production to recruits: connectivity and inter-annual variability in the recruitment patterns of European anchovy in the northwestern Mediterranean. Prog Oceanogr 138: 431–447. [Google Scholar]
  • Palomera I. 1992. Spawning of anchovy Engraulis encrasicolus in the Northwestern Mediterranean relative to hydrographic features in the region. Mar Ecol Prog Ser 79: 215–223. [Google Scholar]
  • Park KD, Myoung JG, Kang YJ, Kim YU. 2005. Seasonal variation of abundance and species composition of ichthyoplankton in the coastal water off Tongyoung, Korea. Kor J Fish Aquat Sci 38: 385–392. [Google Scholar]
  • Pattrick P, Strydom N. 2014. Recruitment of fish larvae and juveniles into two estuarine nursery areas with evidence of ebb tide use. Estuar Coast Self Sci 149: 120–132. [Google Scholar]
  • Porch CE, Lauretta MV. 2016. On making statistical inferences regarding the relationship between spawners and recruits and the irresolute case of western Atlantic bluefin tuna (Thunnus thynnus). PloS one 11: e0156767. [Google Scholar]
  • Rezagholinejad S, Arshad A, Nurul Amin SM, Ehteshami F. 2016. The influence of environmental parameters on fish larval distribution and abundance in the mangrove estuarine area of Marudu bay, Sabah, Malaysia. Surv Fish Sci 2: 67–78. [Google Scholar]
  • Ribeiro F, Hale E, Hilton EJ, Clardy TR, Deary AL, Targett TE, Olney JE. 2015. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays, USA. Mar Ecol Prog Ser 527: 167–180. [Google Scholar]
  • Rodríguez JM. 2008. Temporal and cross-shelf distribution of ichthyoplankton in the central Cantabrian Sea. Estuar Coast Shelf Sci 79: 496–506. [Google Scholar]
  • Russell FS. 1976. The Eggs and Planktonic Stages of British Marine Fishes. London: Academic Press, p. 524. [Google Scholar]
  • Ryu JH, Kim JB, Kim JK. 2011. Temporal and Spatial Variation in Fish Larvae in Gamak Bay and Yeoja Bay, South Sea of Korea. Fish Aquat Sci 14: 55–61. [Google Scholar]
  • Saborido-Rey F, Kjesbu OS, Thorsen A. 2003. Buoyancy of Atlantic cod larvae in relation to developmental stage and maternal influences. J Plankton Res 25: 291–307. [Google Scholar]
  • Santos RVS, Ramos S, Bonecker ACT. 2017. Can we assess the ecological status of estuaries based on larval fish assemblages? Mar Pollut Bull 124: 367–375. [Google Scholar]
  • Schultz ET, Cowen RK, Lwiza KM, Gospodarek AM. 2000. Explaining advection: do larval bay anchovy (Anchoa mitchilli) show selective tidal-stream transport? ICES J Mar Sci 57: 360–371. [Google Scholar]
  • Selleslagh J, Amara R, Laffargue P, Lesourd S, Lepage M, Girardin M. 2009. Fish composition and assemblage structure in three Eastern English Channel macrotidal estuaries: a comparison with other French estuaries. Estuar Coast Shelf Sci 81: 149–159. [Google Scholar]
  • Shoji J, Tanaka M. 2006. Growth-selective survival in piscivorous larvae of Japanese Spanish mackerel Scomberomorus niphonius: early selection and significance of ichthyoplankton prey supply. Mar Ecol Prog Ser 321: 245–254. [Google Scholar]
  • Soares RDA, Torres AR, Neta RNFC. 2019. Fish larval distribution in a macro-tidal regime: An in situ study in São Marcos Bay (Brazilian Equatorial Margin). AIP Conf Proc 2186: 130004. [Google Scholar]
  • Spencer ML, Vestfals CD, Mueter FJ, Laurel BJ. 2020. Ontogenetic changes in the buoyancy and salinity tolerance of eggs and larvae of polar cod (Boreogadus saida) and other gadids. Polar Biol 43: 1141–1158. [Google Scholar]
  • Shoji J, Ohta T, Tanaka M. 2006. Effects of river flow on larval growth and survival of Japanese seaperch Lateolabrax japonicus (Pisces) in the Chikugo River estuary, upper Ariake Bay. J Fish Biol 69: 1662–1674. [Google Scholar]
  • Song MY, Kim JI, Kim ST, Lee JH, Lee JB. 2012. Seasonal variation in species composition of catch by a coastal beam trawl in Jinhae Bay and Jinju Bay, Korea. J Kor Soc Fish Tech 48: 428–444. [Google Scholar]
  • Staaterman E, Paris CB. 2014. Modelling larval fish navigation: the way forward. ICES J Mar Sci 71: 918–924. [Google Scholar]
  • Stoichev T, Amouroux D, Wasserman JC, Point D, De Diego A, Bareille G, Donard OFX. 2004. Dynamics of mercury species in surface sediments of a macrotidal estuarine–coastal system (Adour River, Bay of Biscay). Estuar Coast Shelf Sci 59: 511–521. [Google Scholar]
  • Strydom NA, Whitfield AK, Paterson AW. 2002. Influence of altered freshwater flow regimes on abundance of larval and juvenile Gilchristella aestuaria (Pisces: Clupeidae) in the upper reaches of two South African estuaries. Mar Freshw Res 53: 431–438. [Google Scholar]
  • Swearer SE, Caselle JE, Lea DW, Warner RR. 1999. Larval retention and recruitment in an island population of a coral-reef fish. Nature 402: 799–802. [Google Scholar]
  • Taylor JC, Miller JM, Pietrafesa LJ, Dickey DA, Ross SW. 2010. Winter winds and river discharge determine juvenile southern flounder (Paralichthys lethostigma) recruitment and distribution in North Carolina estuaries. J Sea Res 64: 15–25. [Google Scholar]
  • Temperoni B, Viñas MD. 2013. Food and feeding of Argentine hake (Merluccius hubbsi) larvae in the Patagonian nursery ground. Fish Res 148: 47–55. [Google Scholar]
  • Toledo JD, Caberoy NB, Quinitio GF, Choresca CH, Nakagawa H. 2002. Effects of salinity, aeration and light intensity on oil globule absorption, feeding incidence, growth and survival of early‐stage grouper Epinephelus coioides larvae. Fish Sci 68: 478–483. [Google Scholar]
  • Treml EA, Ford JR, Black KP, Swearer SE. 2015. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov Ecol 3: 17. [Google Scholar]
  • Van Guelpen L, Goodwin C, Milne R, Pohle G, Courtenay S. 2021. Distribution and structure of coastal ichthyoplankton communities of the Bay of Fundy in southern New Brunswick, Canada. Mar Biodivers 51: 1–17. [Google Scholar]
  • Vasconcelos RP, Reis-Santos P, Maia A, Fonseca V, França S, Wouters N, Costa MJ, Cabral HN. 2010. Nursery use patterns of commercially important marine fish species in estuarine systems along the Portuguese coast. Estuar Coast Shelf Sci 86: 613–624. [Google Scholar]
  • Veale L, Coulson P, Hall N, Hesp A, Potter IC. 2015. Age and size compositions, habitats, growth and reproductive characteristics of a terapontid (Pelates octolineatus) in coastal waters. Mar Freshw Res 66: 535–548. [Google Scholar]
  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD. 2005. DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 360: 1847–1857. [Google Scholar]
  • Yang MH, Choi YU, Jung MM, Ku HD, Oh BS, Moon TS, Lee CH, Kim KM, Han SJ. 2007. Temperature effect in egg development and hatching of longtooth grouper, Epinephelus bruneus. Dev Reprod 11: 105–109. [Google Scholar]
  • Yeo HG, Park MO. 1997. Seasonal variations of phytoplankton community and water quality in the East Area of Chinhae Bay. J Kor Environ Sci 6: 231–238. [Google Scholar]
  • Yoo MH, Song TY, Kim ES, Choi JK. 2007. The characteristics on the spatial and temporal distribution of phytoplankton in the Western Jinhae Bay, Korea. The Sea 12: 305–314. [Google Scholar]
  • Zhang H, Xian W, Liu S. 2015. Ichthyoplankton assemblage structure of springs in the Yangtze Estuary revealed by biological and environmental visions. PeerJ 3: e1186. [Google Scholar]
  • Zhang H, Xian W, Liu S. 2016. Autumn ichthyoplankton assemblage in the Yangtze Estuary shaped by environmental factors. PeerJ 4: e1922. [Google Scholar]
  • Ziadi-Künzli F, Tachihara K. 2016. Female defence polygyny and plasticity in the mating system of the demersal triggerfish Rhinecanthus aculeatus (Pisces: Balistidae) from Okinawa Island. Mar Biol 163: 27. [Google Scholar]
  • Zweifel JR, Lasker R. 1976. Prehatch and posthatch growth of fishes a general model. Fish Bull 74: 609–621. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.