Open Access
Issue
Aquat. Living Resour.
Volume 33, 2020
Article Number 9
Number of page(s) 9
DOI https://doi.org/10.1051/alr/2020011
Published online 31 August 2020
  • Aglen A, Nakken O, Venema SC. 1983. Random errors of hydroacoustic fish abundance estimates in relation to the survey grid density applied, in: O. Nakken, S.C. Venema (Eds.). Fisheries Hydroacoustics Symposium. FAO Fish. Rep. 300. Bergen. Norway. 21–24 June 1982, 1983, pp. 293–298. [Google Scholar]
  • Anderson R, Hobbs B, Koonce J, Locci A. 2019. Modeling hydrology − habitat fish population linkages for Lake Erie. Department of Geography and Environmental Engineering 313 Ames Hall. The Johns Hopkins University. 19 p. [Google Scholar]
  • Appenzeller AR, Leggett WC. 1992. Bias in hydroacoustic estimates of fish abundance due to hydroacoustic shadowing: evidence from day-night surveys of vertically migrating fish. Can J Fish Aqua Sci 49: 2179–2189. [Google Scholar]
  • Axenrot T, Didrikas T, Danielsson C, Hansson S. 2004. Diel patterns in pelagic fish behaviour and distribution observed from a stationary, bottom-mounted, and upward-facing transducer. ICES J Mar Sci 61: 1100–1104. [Google Scholar]
  • Balk H, Lindem T. 2011. Sonar4 and Sonar5-Pro post processing systems. Operator manual version 6.01. Oslo: Lindem Data Acquisition. [Google Scholar]
  • Bohl E. 1979. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia 44: 368–375. [PubMed] [Google Scholar]
  • Brandt SB, Magnuson JJ, Crowder LB. 1980. Thermal habitat partitioning by fishes in Lake Michigan. Can J Fish Aquat Sci 37: 1557–1564. [Google Scholar]
  • Brehmer P, Sarré A, Guennégan Y, Guillard J. 2019. Vessel avoidance response: a complex tradeoff between fish multisensory integration and environmental variables. Rev Fish Sci Aqua 27: 380–391. [Google Scholar]
  • Carlander KD. 1969. Handbook of Freshwater Fishery Biology. Ames: Iowa State University Press. [Google Scholar]
  • CEN (European Committee for Standardization). 2005. EN 14757. Water quality − sampling of fish with multi-mesh gillnets. Brussels: CEN. [Google Scholar]
  • CEN (European Committee for Standardization). 2009. EN 15910. Water quality − Guidance on the estimation of fish abundance with mobile hydroacoustic methods. Brussels: CEN. [Google Scholar]
  • Christensen B, Persson L. 1993. Species-specific antipredatory behaviours: effects on prey choice in different habitats. Beh Ecol Sociol 32: 1–9. [Google Scholar]
  • Coll C, De Morais LT, Laë R, Lebourges-Dhaussy A, Simier M, Guillard J, Josse E, Ecoutin JM, Albaret JJ, Raffray J, Kantoussan J. 2007. Use and limits of three methods for assessing fish size spectra and fish abundance in two tropical man-made lakes. Fish Res 83: 306–318. [Google Scholar]
  • Deceliere-Vergès C. 2010. Caractérisation des métriques issues de l'échantillonnage de l'ichtyofaune lacustre et conséquences pour l'évaluation de la qualité du milieu. Doctorat Université de Savoie. https://prodinra.inra.fr/record/175110 [Google Scholar]
  • Dembiński W. 1971. Vertical distribution of vendace Coregonus albula L. and other pelagic fish species in some Polish lakes. J Fish Biol 3: 341–357. [Google Scholar]
  • Draštík V, Kubečka J, Čech M, Frouzová J, Říha M, Juza T, Mrkvička T. 2009. Hydroacoustic estimates of fish stocks in temperate reservoirs: day or night surveys? Aquat Living Resour 22: 69–77. [Google Scholar]
  • DuFour MR, Mayer CM, Kocovsky PM, Qian SS, Warner DM, Kraus RT, Vandergoot CS. 2017. Sparse targets in hydroacoustic surveys: balancing quantity and quality of in situ target strength data. Fish Res 188: 173–182. [Google Scholar]
  • DuFour MR, Mayer CM, Qian SS, Vandergoot CS, Kraus RT, Kocovsky PM, Warner DM. 2018. Inferred fish behavior its implications for hydroacoustic surveys in nearshore habitats. Fish Res 199: 63–75. [Google Scholar]
  • DuFour MR, Qian Song S, Mayer CM, Vandergoot CS. 2019. Evaluating catchability in a large-scale gillnet survey using hydroacoustics: making the case for coupled surveys. Fish Res 211: 309–318. [Google Scholar]
  • Draštík V, Godlewska M, Balk H, Clabburn P, Kubečka J, Morrissey E, Hateley J, Winfield IJ, Mrkvička T, Guillard J. 2017. Fish hydroacoustic survey standardisation: a step forward based on comparisons of methods and systems from vertical surveys of a large deep lake. Limno Ocean Methods 15: 836–846. [Google Scholar]
  • Eklöv P, VanKooten T. 2001. Facilitation among piscivorous predators: effects of prey habitat use. Ecology 82: 2486–2494. [Google Scholar]
  • Emmrich M, Winfield IJ, Guillard J, Rustadbakken A, Vergès C, Volta P, Mehner T. 2012. Strong correspondence between gillnet catch per unit effort and hydroacoustically derived fish biomass in stratified lakes: comparison of gillnet catches with fish biomass estimates derived from hydroacoustics. Freshwater Biol 57: 2436–2448. [Google Scholar]
  • Foote KJ, Knutsen H, Vestnes G, MacLennan DN, Simmonds EJ. 1987. Calibration of hydroacoustic instruments for fish density estimation. Coop Res Rep Inter Coun Expl Sea 144: 1–70. [Google Scholar]
  • Forbes ST, Nakken O. 1972. Manual methods for fisheries resource survey and appraisal. Part I: the use of acoustic instruments for fish detection and abundance estimation. FAO Man Fish Ser 5: 138 p. [Google Scholar]
  • Fréon P, Misund OA. 1998. Dynamics of pelagic fish distribution and behaviour: effects on fisheries and stock assessment (1st ed.) Oxford: Wiley-Blackwell. [Google Scholar]
  • Fréon P, Soria M, Mullon C, Gerlotto F. 1993. Diurnal variation in fish density estimate during hydroacoustic surveys in relation to spatial distribution and avoidance reaction. Aquat Living Resour 6: 221–234. [Google Scholar]
  • Gerdeaux D, Anneville O, Hefti D. 2006. Fishery changes during re-oligotrophication in 11 peri-alpine Swiss and French lakes over the past 30 years. Acta Oecol 30: 161–167. [Google Scholar]
  • Girard M. 2018. Comparaison jour − nuit de l'analyse hydroacoustique des peuplements piscicoles lacustres. Master2 Patrimoine naturel et biodiversité . Univ. Rennes 1. 36 p. [Google Scholar]
  • Gliwicz M, Slon J, Szynkarczyk I. 2006. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge. Freshw Biol 51 :823–839. [Google Scholar]
  • Godlewska M. 2002. The effect of fish migration patterns on the hydroacoustical estimates of fish stocks. Acta Acust United Ac 88: 4. [Google Scholar]
  • Godlewska M, Colon M, Jóźwik A, Guillard J. 2011. How pulse lengths impact fish stock estimations during hydroacoustic measurements at 70 kHz. Aquat Living Resour 24: 71–78. [Google Scholar]
  • Godlewska M, Izydorczyk K, Kaczkowski Z, Józwik A, Długoszewski B, Ye S, Lian Y, Guillard J. 2016. Do fish and blue-green algae blooms coexist in space and time? Fish Res 173: 93–100. [Google Scholar]
  • Guillard J, Lebourges-Dhaussy A, Brehmer P. 2004. Simultaneous Sv and TS measurements on Young-of-the-Year (YOY) freshwater fish using three frequencies. ICES J Mar Sci 61: 267–273. [Google Scholar]
  • Guillard J, Perga ME, Colon M, Angeli N. 2006. Hydroacoustic assessment of young-of-year perch. Perca fluviatilis population dynamics in an oligotrophic lake (Lake Annecy. France). Fish Manag Ecol 13: 319–327. [Google Scholar]
  • Guillard J, Brehmer P, Colon M, Guennégan Y. 2006. Three dimensional characteristics of young–of–year pelagic fish schools in lake. Aquat Living Res 19: 115–122. [Google Scholar]
  • Guillard J, Vergés C. 2007. The repeatability of fish biomass and size distribution estimates obtained by hydroacoustic surveys using various survey designs and statistical analyses. Inter Rev Hydrobiol 92: 605–617. [Google Scholar]
  • Guo AH, Yuan JL, Chu TJ, Lian QP. 2019. Hydroacoustic assessment of fish resources in three reservoirs : the effects of different management strategies on fish density. biomass and size. Fish Res 215: 90–96. [Google Scholar]
  • Hölker F, Dörner H, Schulze T, Haertel‐Borer SS, Peacor SD, Mehner T. 2007. Species-specific responses of planktivorous fish to the introduction of a new piscivore: implications for prey fitness. Freshw Biol 52: 1793–1806. [Google Scholar]
  • Jacobsen L, Berg S, Jepsen N, Skov C. 2004. Does roach behaviour differ between shallow lakes of different environmental state? J Fish Biol 65: 135–147. [Google Scholar]
  • Kahilainen K, Malinen T, Tuomaala A, Lehtonen H. 2004. Diel and seasonal habitat and food segregation of three sympatric Coregonus lavaretus forms in a subarctic lake. J Fish Biol 64: 418–434. [Google Scholar]
  • Kubečka J, Hohausová E, Matěna J, Peterka J, Amarasinghe US, Bonar SA, Winfield IJ. 2009. The true picture of a lake or reservoir fish stock: a review of needs and progress. Fish Res 96: 1–5. [Google Scholar]
  • Love RH. 1971. Dorsal-aspect target strength of an individual fish. J Acous Soc Am 49: 816–823. [Google Scholar]
  • Luecke C, Wurtsbaugh WA. 1993. Effects of moonlight and daylight on hydroacoustic estimates of pelagic fish abundance. Trans Am Fish Soc 122: 112–120. [Google Scholar]
  • MacLennan DN, Fernandes PG, Dalen J. 2002. A consistent approach to definitions and symbols in fisheries hydroacoustics. ICES J Mar Sci 59: 365–369. [Google Scholar]
  • MacNamara R, Glover D, Garvey J, Bouska W, Irons K. 2016. Bigheaded carps (Hypophthalmichthys spp.) at the edge of their invaded range: using hydroacoustics to assess population parameters and the efficacy of harvest as a control strategy in a large North American river. Biol Invasions 18: 3293–3307. [Google Scholar]
  • Masson S, Angeli N, Guillard J, Pinel-Alloul B. 2001. Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: an approach based on high frequency sampling. J Plankt Res 23: 1041–1060. [Google Scholar]
  • Matthews WJ. 2012. Patterns in freshwater fish ecology. Edit Kluwer Academic Publishers. 756 p. [Google Scholar]
  • Mehner T, Busch S, Helland IP, Emmrich M, Freyhof J. 2010. Temperature-related nocturnal vertical segregation of coexisting coregonids: Nocturnal segregation of coregonids. Ecol Fresh Fish 19: 408–419. [Google Scholar]
  • Mehner T. 2012. Diel vertical migration of freshwater fishes − proximate triggers, ultimate causes and research perspectives: Diel vertical migration in freshwater fishes. Freshw Biol 57: 1342–1359. [Google Scholar]
  • Mouget A, Goulon C, Axenrot T, Balk H, Lebourges-Dhaussy A, Godlewska M, Guillard J. 2019. Including 38 kHz in the standardisation protocol for hydroacoustic fish surveys in temperate lakes. Remote Sens Ecol Conserv 5: 332–345. [Google Scholar]
  • Morrissey-McCaffrey E, Rocks K, Kelly FL, Kelly-Quinn M. 2018. Effects of differing ground-truth data transect design and statistical analysis on the repeatability of hydroacoustic assessments of pollan Coregonus autumnalis pollan . Fish Manag Ecol 25: 304–318. [Google Scholar]
  • Parker-Stetter SL, Rudstam LG, Sullivan PJ, Warner DM. 2009. Standard operating procedures for fisheries hydroacoustic surveys in the Great Lakes. Great Lakes Fishery Commission Special Publication 9: 165. [Google Scholar]
  • Périat G. 2012. Etude du peuplement pisciaire du Lac de Morat. Eawag. 47. [Google Scholar]
  • Périat G, Vonlanthen P. 2013. Etude du peuplement pisciaire du Lac de Neuchâtel. Eawag. 48. [Google Scholar]
  • Persson L, Eklöv P. 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81. [Google Scholar]
  • Pollom RA, Rose GA. 2016. A global review of the spatial. taxonomic. and temporal scope of freshwater fisheries hydroacoustics research. Environ Rev 24: 333–347. [Google Scholar]
  • Probst WN, Thomas G, Eckmann R. 2009. Hydroacoustic observations of surface shoaling behaviour of young-of-the-year perch Perca fluviatilis (Linnaeus, 1758) with a towed upward-facing transducer. Fish Res 96: 133–138. [Google Scholar]
  • R Core Team. 2014. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Austria. http://www.R-project.org/. [Google Scholar]
  • Říha M, Ricard D, Vašek M, Prchalová M, Mrkvička T, Jůza T, Kubečka J. 2014. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiology 747: 111–131. [Google Scholar]
  • Rudstam LG, Jech JM, Parker-Stetter SL, Horne JK, Sullivan PJ, Mason DM. 2012. Fisheries hydroacoustics, in: A.V. Zale, D.L. Parrish, T.M. Sutton (eds.), Fisheries Techniques (3rd edn.) Bethesda, Maryland: American Fisheries Society, pp. 40. [Google Scholar]
  • Sajdlová Z, Frouzová J, Draštík V, Jůza T, Peterka J, Prchalová M, Čech M. 2018. Are diel vertical migrations of European perch (Perca fluviatilis L.) early juveniles under direct control of light intensity? Evidence from a large field experiment. Freshw Biol 63: 473–482. [Google Scholar]
  • Sawada K, Furusawa M, Williamson N. 1993. Condition for the precise measurement of fish target strength in situ . Fish Sci 20: 73–79. [Google Scholar]
  • Shaw E. 1962. The schooling of fishes. Scient Am 206:128–141. [Google Scholar]
  • Simmonds J, MacLennan DN. 2005. Fisheries Acoustics: Theory and Practice, 2nd edn. Fisheries Series. Oxford: Blackwell Publishing. [Google Scholar]
  • Snickars M, Sandström A, Mattila J. 2004. Antipredator behaviour of 0+ year Perca fluviatilis: effect of vegetation density and turbidity. J Fish Biol 65: 1604–1613. [Google Scholar]
  • Swales S. 2006. A review of factors affecting the distribution and abundance of Rainbow Trout (Oncorhynchus mykiss Walbaum) in lake and reservoir systems. Lake Reser Manag 22: 167–178. [Google Scholar]
  • Tessier A, Cottet M, Kue K, Chanudet V, Descloux S, Guillard J. 2020. Low input to fisheries of offshore areas in a large tropical neo-reservoir in Lao PDR. Limnology 21: 73–86. [Google Scholar]
  • Vondracek B, Degan DJ. 1995. Among and within transect variability in estimates of Shad abundance made with hydroacoustics. North Am J Fish Manag 15: 933–939. [Google Scholar]
  • Vonlanthen P, Périat G. 2013. Artenvielfalt und zusammensetzung der fischpopulation im Brienzersee. Eawag. 44. [Google Scholar]
  • Warton DI, Wright IJ, Falster DS, Westoby M. 2006. Bivariate line-fitting methods for allometry. Biol Rev 81: 259–291. [Google Scholar]
  • Warton DI, Duursma RA, Falster DS, Taskinen S. 2012. Smatr 3–an R package for estimation and inference about allometric lines. Meth Ecol Evol 3: 257–259. [Google Scholar]
  • Wheeland LJ, Rose GA. 2014. Acoustic measures of lake community size spectra. Can J Fish Aquat Sci 73: 557–564. [Google Scholar]
  • Wheeland LJ, Rose GA. 2015. Quantifying fish avoidance of small hydroacoustic survey vessels in boreal lakes and reservoirs. Ecol Freshw Fish 24: 67–76. [Google Scholar]
  • Ye S, Lian Y, Godlewska M, Liu J, Li Z. 2013. Day-night differences in hydroacoustic estimates of fish abundance and distribution in Lake Laojianghe. China. J Appl Ichthyol 29: 1423–1429. [Google Scholar]
  • Yule DL, Evrard LM, Cachera S, Colon M, Guillard J. 2013. Comparing two fish sampling standards over time: largely congruent results but with caveats. Freshw Biol 58: 2074–2088. [Google Scholar]
  • Zenone AM, Burkepile DE, Boswell KM. 2017. A comparison of diver vs. acoustic methodologies for surveying fishes in a shallow water coral reef ecosystem. Fish Res 189: 62–66. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.