Open Access
Issue
Aquat. Living Resour.
Volume 33, 2020
Article Number 8
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2020008
Published online 25 August 2020
  • Abbot RT. 1974. American Seashells; the marine mollusca of the atlantic and pacific coats of North America. 2. Ed. New York, USA: Van Nostrand Reinold. [Google Scholar]
  • Ansell AD. 1968. The rate of growth of the hard clam Mercenaria mercenaria (L.) throughout the geographical range. J Cons Int Expl Mer 31: 364–409. [Google Scholar]
  • Arnold WS, Marelli DC, Bert TM, Jones DS, Quitmyer IR. 1991. Habitat-specific growth of hard clam Mercenaria mercenaria (L.) from the Indian River, Florida. J Exp Mar Biol Ecol 147: 245–265. [Google Scholar]
  • Babarro JMF, Fernandez-Reiriz MJ, Labarta U. 2003. Insitu absorption efficiency processes for the cultured mussel Mytilus galloprovincialis in Ria de Arousa (north-west Spain). J Mar Biol Ass UK 83: 1059–1064. [Google Scholar]
  • Bayne BL. 2000. Relations between variable rates of growth, metabolic costs and growth efficiencies in individual Sydney rock oysters (Saccostrea commercialis). J Exp Mar Biol Ecol 251: 185–203. [PubMed] [Google Scholar]
  • Bayne BL. 1999. Physiological components of growth differences between individual oysters (Crassostrea gigas) and a comparison with Saccostrea commercialis . Physiol Biochem Zool 72: 705–13. [PubMed] [Google Scholar]
  • Bayne BL. 1976. Physiology 1. Marine mussels: Their ecology and physiology. In: Marine Mussels: Their Ecology and Physiology. New York, NY, pp. 121–207. [Google Scholar]
  • Bricelj M, Macquarrie P, Scha A. 2001. Differential effects of Aureococcus anophagefferens isolates (“brown tide”) in unialgal and mixed suspensions on bivalve feeding. Mar Biol 139: 605–615. [Google Scholar]
  • Byron CJ, Costa-Pierce B. 2013. Carrying capacity tools for use in the implementation of an ecosystems approach to aquaculture. In L.G. Ross, T.C. Telfer, L. Falconer, D. Soto, J. Aguilar-Manjarrez (Eds.), Site selection and carrying capacities for inland and coastal aquaculture, FAO/Institute of Aquaculture, University of Stirling, Expert Workshop, 6–8 December 2010. Stirling, the United Kingdom of Great Britain and Northern Ireland. FAO Fisheries and Aquaculture Proceedings No. 21. Rome, FAO, pp. 87–101. 282 pp. [Google Scholar]
  • Carriker MR, Gaffney PM. 1996. A catalogue of selected species of living oysters (Ostreacea) of the world. In: V.S. Kennedy, R.I.E. Newell, A.F. Eble (Eds.),The Eastern Oyster Crassostrea virginica , in: MD (Ed.), The Eastern Oyster Crassostrea Virginica. pp. 1– 18. [Google Scholar]
  • Comeau LA. 2013. Suspended versus bottom oyster culture in eastern Canada: Comparing stocking densities and clearance rates. Aquaculture 410–411: 57–65. [Google Scholar]
  • Comeau LA, Drapeau A, Landry T, Davidson J. 2008a. Development of longline mussel farming and the in fluence of sleeve spacing in Prince Edward Island, Canada. Aquaculture 281: 56–62. [Google Scholar]
  • Comeau LA, Guyondet T, Sonier R. 2015. The impact of invasive tunicates on the demand for phytoplankton in longline mussel farms. Aquaculture 441: 95–105. [Google Scholar]
  • Comeau LA, Mayrand E, Mallet A. 2012. Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar Biol 159: 2269–2279. [Google Scholar]
  • Comeau LA, Pernet F, Tremblay R, Bates SS, Leblanc A. 2008b. Comparison of eastern oyster (Crassostrea virginica) and blue mussel (Mytilus edulis) filtration rates at low temperatures. Can Tech Rep Fish Aquat Sci 2810: 1–17. [Google Scholar]
  • Conover RJ. 1966. Assimilation of organic matter by zooplankton. Limnol Ocean 11: 338–345. [Google Scholar]
  • Cranford PJ, Dowd M, Grant J, Hargrave B, McGladdery SE. 2003. A scientific review of the potential environmental effects of aquaculture in aquatic ecosystems. Can Tech Rep Fish Aquac Sci 2450: 131. [Google Scholar]
  • Cranford PJ, Hill PS. 1999. Seasonal variation in food utilization by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus . Mar Ecol Prog Ser 190: 223–239. [Google Scholar]
  • Cranford PJ, Li W, Strand Ø, Strohmeier T. 2008. Phytoplankton depletion by mussel aquaculture: high resolution mapping, ecosystem modelling and potential indicators of ecological carrying capacity. Ices C 2008/H:12, 1–5. [Google Scholar]
  • Cusson M, Tremblay R, Daigle G, Roussy M. 2005. Modeling the depuration potential of blue mussels (Mytilus spp.) in response to thermal shock. Aquaculture 250: 183–193. [Google Scholar]
  • D'Amours OD, Archambault P, Mckindsey CW, Johnson LE. 2008. Local enhancement of epibenthic macrofauna by aquaculture activities. Mar Ecol Prog Ser 371: 73–84. [Google Scholar]
  • Denis L, Alliot E, Grezbyk D. 1999. Clearance rate responses of Mediterranean mussels, Mytilus galloprovincialis, to variations in the flow, water temperature, food quality and quantity. Aquat Living Resour 12: 179–188. [Google Scholar]
  • DFO 2015. Carrying capacity for shellfish aquaculture with reference to mussel aquaculture in Malpeque Bay, Prince Edward Isaland. DFO Can Sci Advis Sec Sci Advis Rep 2015/003. [Google Scholar]
  • Delaporte M, Synard M, Pariseau J, McKenna P, Tremblay R, Davidson J, Berthe FCJ. 2008. Assessment of haemic neoplasia in different soft shell clam Mya arenaria populations from eastern Canada by flow cytometry. J Invert Path 98: 190–197. [Google Scholar]
  • Dillon RTJ, Manzi JJ. 1992. Population genetics of the hard clam, Mercenaria mercenaria, at the northern limit of its range. Can J Fish Aquat Sci 42: 2574–2578. [Google Scholar]
  • Drapeau A, Comeau LA, Landry T, Stryhn H, Davidson J. 2006. Association between longline design and mussel productivity in Prince Edward Island, Canada. Aquaculture 261: 879–889. [Google Scholar]
  • Filgueira R, Comeau LA, Guyondet T. 2015a. Modelling carrying capacity of bivalve aquaculture: a review of definitions and methods. DFO Can Sci Advis Sec Res Doc 2015/002. v + 31 p. [Google Scholar]
  • Filgueira R, Guyondet T, Bacher C, Comeau LA. 2015b. Carrying capacity for mussel aquaculture in Malpeque Bay, Prince Edward Island. DFO Can Sci Advis Sec Res Doc 2015/, v + 36 p. [Google Scholar]
  • Filgueira R, Comeau LA, Landry T, Grant J, Guyondet T, Malle A. 2013. Bivalve condition index as an indicator of aquaculture intensity: a meta-analysis. Ecol Indic 25: 215–229. [Google Scholar]
  • Gibbs MT. 2007. Sustainability performance indicators for suspended bivalve aquaculture activities. Ecol Indic 7: 94–107. [Google Scholar]
  • Gilek M, Tedengren M, Kautsky N. 1992. Physiological performance and general histology of the blue mussel Mytilus edulis from the Baltic and North Seas. Neth J Sea Res 30: 11–21. [Google Scholar]
  • Gosling E. 1992. Systematics and geographic distribution of Mytilus. In The mussel Mytilus: Ecology, physiology, genetics and culture. Developments in aquaculture and fisheries science No25, Elsevier, Amsterdam, pp. 1–20. [Google Scholar]
  • Grant J, Curran KJ, Guyondet TL, Tita G, Bacher C, Koutitonsky V, Dowd M. 2007. A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entrée, Iles-de-la-Madeleine, Québec. Ecol Modell 200: 193–206. [Google Scholar]
  • Guyondet T, Comeau LA, Bacher C, Grant J, Rosland R, Sonier R, Filgueira R. 2015a. Climate change influences carrying capacity in a coastal embayment dedicated to shellfish aquaculture. Estuar Coasts 38: 1593–1618. [Google Scholar]
  • Guyondet T, Comeau LA, Bacher C, Grant J, Rosland R, Sonier R, Filgueira R. 2015b. Climate change influences productivity of cultivated mussels. Estuar Coasts 38: 1593–1618. [Google Scholar]
  • Guyondet T, Roy S, Koutitonsky VG, Grant J, Tita G. 2010. Integrating multiple spatial scales in the carrying capacity assessment of a coastal ecosystem for bivalve aquaculture. J Sea Res 64: 341–359. [Google Scholar]
  • Harke MJ, Gobler CJ, Shumway SE. 2011. Suspension feeding by the Atlantic slipper limpet (Crepidula fornicata) and the northern quahog (Mercenaria mercenaria) in the presence of cultured and wild populations of the harmful brown tide alga, Aureococcus anophagefferens . Harmful Algae 10: 503–511. [Google Scholar]
  • Harte ME. 2001. Systematics and Taxonomy, In: Biology of the Hard Clam. J.N. Kraeuter, M. Castagna (Eds.), Developments in aquaculture and fisheries science No31. Amsterdam: Elsevier, pp. 3– 52. [Google Scholar]
  • Hilbish T. 2001. Genetics of hard clams, Mercenaria mercenaria. In: J.N. Kraeuter, M. Castagna (Eds.), Biology of the Hard Clam. Developments in Aquaculture and Fisheries Science, No. 31. Amsterdam: Elsevier, pp. 261– 280. [Google Scholar]
  • Jones DS, Athur MA, Allard DJ. 1989. Sclerochronological reccords of temperature and growth from shells of Mercenaria mercenaria from Narraganestt Bay. Mar Biol 102: 225–234. [Google Scholar]
  • Jones DS, Quitmyer IR, Arnold WS, Marelli DC. 1990. Annual shell banding, age, and growth rate of hard clams (Mercenaria spp.) from Florida. J Shellfish Res 9: 215–225. [Google Scholar]
  • Jones J, Allam B, Espinosa EP. 2020. Particle selection in suspension-feeding bivalves: Does one model fit all? Biol Bull 238. [Google Scholar]
  • Jørgensen C, Larsen P, Riisgaård H. 1990. Effects of temperature on the mussel pump. Mar Ecol Prog Ser 64: 89–97. [Google Scholar]
  • Lachance A, Hennebicq R, Myrand B, Sévigny J-M, Kraffe E, Marty Y, Marcotte I, Tremblay R. 2011. Biochemical and genetic characteristics of suspension-cultured mussels (Mytilus edulis) in relation to byssal thread production and losses by fall-off. Aquat Living Resour 293: 283–293. [Google Scholar]
  • Landry T, Sephton TW, Jones DA. 1993. Growth and mortality of northern quahog, Mercenaria mercenaria (Linneaeus, 1758) in Prince Edward Island. J Shellfish Res 12: 321–327. [Google Scholar]
  • Le DV, Alfaro AC, Ibarrola I, Ragg NLC, Hilton Z, King N. 2017. Allometric scaling of physiological rates in the New Zealand geoduck clam, Panopea zelandica . Aquaculture 473: 105–109. [Google Scholar]
  • Loosanoff VL. 1958. Some aspects of behavior of oysters at different temperatures. Biol Bull 114: 57–70. [Google Scholar]
  • Mallet AL, Myrand B. 1995. The culture of the blue mussel in Atlantic Canada., In: A.D. Boghen (Ed.), Cold-Water Aquaculture in Atlantic Canada, 2nd edn. Moncton, Canada. [Google Scholar]
  • McKindsey CW, Thetmeyer H, Landry T, Silvert W. 2006. Review of recent carrying capacity models for bivalve culture and recommendations for research and management. Aquaculture 261: 451–462. [Google Scholar]
  • Myrand B, Tremblay R, Sévigny J. 2009. Impact of suspension culture using mesh sleeves on genetic characteristics of Mytilus edulis L. in Canada. Aquaculture 291: 147–153. [Google Scholar]
  • Navarro JM, Labarta U, Fernandez-Reiri MJ, Velasco A. 2003. Feeding behavior and differential absorption of biochemical components by the infaunal bivalve Mulinia edulis and the epibenthic Mytilus chilensis in response to changes in food regimes. J Exp Mar Biol Ecol 287: 13–35. [Google Scholar]
  • Newell CR, Wildish DJ, MacDonald BA. 2001. The effects of velocity and seston concentration on the exhalant siphon area, valve gape and filtration rate of the mussel Mytilus edulis . J Exp Mar Biol Ecol 262: 91–111. [Google Scholar]
  • Perez-Camacho A, Gonzalez R, Fuentes J. 1991. Mussel culture in Galicia (N.W. Spain). Aquaculture 94: 263–278. [Google Scholar]
  • Pernet F, Tremblay R, Comeau L, Guderley K. 2007. Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J Exp Biol 210: 2999–3014. [CrossRef] [PubMed] [Google Scholar]
  • Pernet F, Tremblay R, Redjah I, Sevigny J-M, Gionet C. 2008. Physiological and biochemical traits correlate with differences in growth rate and temperature adaptation among groups of the eastern oyster Crassostrea virginica . J Exp Biol 211: 969–977. [PubMed] [Google Scholar]
  • Riisgård HU. 1998. No foundation of a “3/4 power scaling law” for respiration in biology. Ecol Lett 1: 71–73. [Google Scholar]
  • Riisgård HU, Seerup DF. 2003. Filtration rates in the soft clam Mya arenaria: effects of temperature and body size. Sarsia 88: 416–428. [Google Scholar]
  • Rosa M, Ward J, Shumway S. 2018. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J Shellfish Res 37: 727–746. [Google Scholar]
  • Sonier R, Filgueira R, Daoud D, Comeau LA. 2018. Feeding pressure of Mytilus edulis and Styela clava on phytoplankton and zooplankton, including lobster larvae (stages I and IV). Can Tech Rep Fish Aquat Sci 3263: vi + 19 p. [Google Scholar]
  • Sonier R, Filgueira R, Guyondet T, Tremblay R, Olivier F, Meziane T, Starr M, Leblanc AR, Comeau LA. 2016. Picophytoplankton contribution to Mytilus edulis growth in an intensive culture environment. Mar Biol 163: 73–88. [Google Scholar]
  • Tedengren M, Andre C, Johannesson K, Kautsky N. 1990. Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. II. Genetic variation Mar Ecol Prog Ser 59: 211–219. [Google Scholar]
  • Tremblay R, Landry T. 2016. The implication of metabolic performance of Mytilus edulis, Mytilus trossulus, and hybrids for mussel aquaculture in Eastern Canadian waters. J Mar Biol Aquacult 2: 1–7. [Google Scholar]
  • Tremblay R, Belvin S, Thomas B. 2012. Suivi pathologique des bivalves aux sites d'élevage commerciaux et expérimentaux. SODIM Report, 37p. [Google Scholar]
  • Tremblay R, Landry T, Leblanc N, Pernet F, Barkhouse C, Sévigny J. 2011. Physiological and biochemical indicators of mussel seed quality in relation to temperatures. Aquat Living Resour 24: 273–282. [Google Scholar]
  • Tremblay R, Myrand B, Sevigny JM, Blier P, Guderley H. 1998. Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. J Exp Mar Biol Ecol 221: 27–58. [Google Scholar]
  • Trottet A, Roy S, Tamigneaux E, Lovejoy C, Tremblay R. 2008. Impact of suspended mussels (Mytilus edulis L.) on plankton communities in a Magdalen Islands lagoon (Québec, Canada): a mesocosm approach. J Exp Mar Biol Ecol 365: 103–115. [Google Scholar]
  • Velasco LA, Carreño-Aguirre A, Toro B. 2019. Effect of body size on the energetic physiology of the west Indian top shell cittarium pica (Linnaeus, 1758). Lat Am J Aquat Res 47: 251–259. [Google Scholar]
  • Velasco LA, Navarro JM. 2005. Feeding physiology of two bivalves under laboratory and field conditions in response to variable food concentrations. Mar Ecol Prog Ser 291: 115–124. [Google Scholar]
  • Waite L, Grant J, Davidson J. 2005. Bay-scale spatial growth variation of mussels Mytilus edulis in suspended culture, Prince Edward Island, Canada. Mar Ecol Prog Ser 297: 157–167. [Google Scholar]
  • Walne P. 1972. The influence of current speed, body size and water temperature on the filtration rate of five species of bivalves. J Mar Biol Assoc UK 52: 345–374. [Google Scholar]
  • Widdows J. 1985. Physiological procedures. In: B.L. Bayne, D.R. Livingstone, D.M. Lowe, M.N. Moore, A.R.D. Stebbing, J. Widdows (Eds.), The effects of stress and pollution on marine animals. New York: Praeger, pp. 161– 178. [Google Scholar]
  • Widdows J. 1978. Combined effects of body size, food concentration and season on the physiology of Mytilus edulis . J Mar Biol Assoc UK 58: 109–124. [Google Scholar]
  • Widdows J, Johnson D. 1988. Physiological energetics of Mytilus edulis: Scope for Growth. Mar Ecol Prog Ser 46: 113–121. [Google Scholar]
  • Winter J. 1978. A review of the knowledge of suspension feeding lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13: 1–33. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.