Free Access
Issue
Aquat. Living Resour.
Volume 33, 2020
Article Number 7
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2020007
Published online 17 August 2020
  • Alarcon JA, Magoulas A, et al. 2004. Genetic comparison of wild and cultivated European populations of the gilthead sea bream (Sparus aurata). Aquaculture 230: 65–80. [Google Scholar]
  • Arechavala-Lopez P, Fernandez-Jover D, et al. 2012a. Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Rev Aquacult 4: 1–21. [CrossRef] [Google Scholar]
  • Arechavala-Lopez P, Sanchez-Jerez P, et al. 2012b Morphological differences between wild and farmed Mediterranean fish. Hydrobiologia 679: 217–231. [Google Scholar]
  • Arechavala-Lopez P, Toledo-Guedes K, et al. 2018. Implications of sea bream and sea bass escapes for sustainable aquaculture management: a review of interactions, risks and consequences. Rev Fish Sci Aquac 26: 214–234. [CrossRef] [Google Scholar]
  • Barazi-Yeroulanos L. Regional synthesis of the Mediterranean marine finfish aquaculture sector and development of a strategy for marketing and promotion of Mediterranean aquaculture (MedAqua- Market). Studies and Reviews General Fisheries Commission for the Mediterranean N° 88. Food and Agriculture Organization, Rome, Italy, 2010. [Google Scholar]
  • Barth JMI, Berg PR, et al. 2017. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol 26 : 4452–4466. [CrossRef] [PubMed] [Google Scholar]
  • Belkhir K, Borsa P, et al. 2000. Genetix version 4.02. logiciel sous Windows™ pour la génétique des populations. Montpellier . [Google Scholar]
  • Ben Slimen H, Guerbej H, et al. 2004. Genetic differentiation between populations of gilthead seabream (Sparus aurata) along the Tunisian coast. Cybium 28: 45–50. [Google Scholar]
  • Bernas R, Pocwierz-Kotus A, et al. 2020. Genetic differentiation in hatchery and stocked populations of sea trout in the Southern Baltic: selection evidence at SNP loci. Genes (Basel) 11. [Google Scholar]
  • Castilho R, Ciftci Y. 2005. Genetic differentiation between close eastern Mediterranean Dicentrarchus labrax (L.) populations. J Fish Biol 67: 1746–1752. [Google Scholar]
  • Chistiakov DA, Tsigenopoulos CS, et al. 2008. A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Animal Genet 39: 623–634. [CrossRef] [PubMed] [Google Scholar]
  • D'Ambrosio J, Phocas F, et al. 2019. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genet Sel Evol 51: 26. [Google Scholar]
  • de Oliveira RC, Santos MdCoF, et al., 2018, From river to farm: an evaluation of genetic diversity in wild and aquaculture stocks of Brycon amazonicus (Spix & Agassiz, 1829), Characidae, Bryconinae. Hydrobiologia 805, 75–88. [Google Scholar]
  • Dempster T, Moe H, et al. 2007. Escapes of marine fish from sea-cage aquaculture in the Mediterranean Sea: status and prevention. CIESM Workshop Monogr 32: 55–60. [Google Scholar]
  • Dimitriou E, Katselis G, et al. 2007. Possible influence of reared gilthead sea bream (Sparus aurata, L.) on wild stocks in the area of the Messolonghi lagoon (Ionian Sea, Greece). Aquacult Res 38: 398–408. [CrossRef] [Google Scholar]
  • Earl DA, Vonholdt BM. 2012. Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4: 359–361. [Google Scholar]
  • Evanno G, Regnaut S, et al. 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14: 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  • Falush D, Stephens M, et al. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587. [PubMed] [Google Scholar]
  • Fleming IA, Hindar K, et al. 2000. Lifetime success and interactions of farm salmon invading a native population. P Roy Soc Lond B Bio 267: 1517–1523. [CrossRef] [Google Scholar]
  • Franch R, Louro B, et al. 2006. A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 174: 851–861. [CrossRef] [PubMed] [Google Scholar]
  • Garcia DeLeon FJ, Chikhi L, et al. 1997. Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758). Mol Ecol 6: 51–62. [Google Scholar]
  • Gkagkavouzis K, Karaiskou N, et al. 2019. The genetic population structure and temporal genetic stability of gilthead sea bream Sparus aurata populations in the Aegean and Ionian Seas, using microsatellite DNA markers. J Fish Biol 94: 606–613. [CrossRef] [PubMed] [Google Scholar]
  • Glover KA. 2008. Genetic characterisation of farmed rainbow trout in Norway: intra- and inter-strain variation reveals potential for identification of escapees. BMC Genet 9, 87. [CrossRef] [PubMed] [Google Scholar]
  • Glover KA. 2010. Forensic identification of fish farm escapees: the Norwegian experience. Aquacult Env Interac 1: 1–10. [CrossRef] [Google Scholar]
  • Guinand B, Quere N, et al. 2015. From the laboratory to the wild: salinity-based genetic differentiation of the European sea bass (Dicentrarchus labrax) using gene-associated and gene-independent microsatellite markers. Mar Biol 162(3): 515–538. Mar Ecol Prog Ser 558: 115–127. [Google Scholar]
  • ICES. Report of the Working Group on Environmental Interactions of Mariculture (WGEIM). Narragansett, Rhode Island, USA, p. 195, 2006. [Google Scholar]
  • ICES. Report of the Working Group on Aquaculture (WGAQUA). Narragansett, USA, ICES (WGQUA), p. 151, 2015. [Google Scholar]
  • Jensen Ò, Dempster T, et al. 2010. Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquacult Env Interac 1, 71–83. [CrossRef] [Google Scholar]
  • Jombart T, Ahmed I. 2011, Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070–3071. [CrossRef] [PubMed] [Google Scholar]
  • Karaiskou N, Triantafyllidis A, et al. 2009 Microsatellite variability of wild and farmed populations of Sparus aurata. J Fish Biol 74, 1816–1825. [CrossRef] [PubMed] [Google Scholar]
  • Lemaire C, Allegrucci G, et al. 2000. Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol Ecol 9: 457–467. [CrossRef] [PubMed] [Google Scholar]
  • Lemaire C, Versini JJ, et al. 2005. Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasmic markers. J Evol Biol 18, 70–80. [Google Scholar]
  • Lilia BS, Christophe L, Béatrice C, Pascal D, Oum KBH, François B, 2005. Impact of aquaculture on the genetic structure of Mediterranean populations of Dicentrarchus labrax. Aquat Living Resour 18: 71–76. [CrossRef] [Google Scholar]
  • Loukovitis D, Sarropoulou E, et al. 2011. Genetic variation in farmed populations of the gilthead sea bream Sparus aurata in Greece using microsatellite DNA markers. Aquacult Res 42: 1–8. [CrossRef] [Google Scholar]
  • McGinnity P, Prodohl P, et al. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. P Roy Soc Lond B Bio 270: 2443–2450. [CrossRef] [PubMed] [Google Scholar]
  • McGinnity P, Stone C, et al. 1997. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. Ices J Mar Sci 54: 998–1008. [Google Scholar]
  • Miller SA, Dykes DD, et al. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215. [CrossRef] [PubMed] [Google Scholar]
  • Naciri M, Lemaire C, et al. 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J Hered 90: 591–596. [Google Scholar]
  • Norris AT, Bradley DG, et al. 1999. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180: 247–264. [Google Scholar]
  • Pritchard JK, Stephens M, et al. 2000, Inference of population structure using multilocus genotype data. Genetics 155: 945–959. [PubMed] [Google Scholar]
  • Ramasamy RK, Ramasamy S, et al. 2014. Structure Plot: a program for drawing elegant Structure bar plots in user friendly interface. Springerplus 3: 431. [CrossRef] [PubMed] [Google Scholar]
  • Raymond M, Rousset F. 1995. Genepop (Version-1.2) − Population-genetics software for exact tests and ecumenicism. J Hered 86: 248–249. [Google Scholar]
  • Reed TE, Prodohl P, et al. 2015. Quantifying heritable variation in fitness-related traits of wild, farmed and hybrid Atlantic salmon families in a wild river environment. Heredity (Edinb) 115: 173–184. [CrossRef] [PubMed] [Google Scholar]
  • Rossi AR, Perrone E, et al. 2006. Genetic structure of gilthead seabream, Sparus aurata, in the central Mediterranean sea. Cent Eur J Biol 1: 636–647. [Google Scholar]
  • Sawayama E, Nakao H, et al. 2019 Identification and quantification of farmed red sea bream escapees from a large aquaculture area in Japan using microsatellite DNA markers. Aquat Living Resour 32, 26. [CrossRef] [Google Scholar]
  • Segvic-Bubic T, Arechavala-Lopez P, et al. 2018. Site fidelity of farmed gilthead seabream Sparus aurata escapees in a coastal environment of the Adriatic Sea. Aquacult Env Interac 10: 21–34. [CrossRef] [Google Scholar]
  • Segvic-Bubic T, Lepen I, et al. 2011. Population genetic structure of reared and wild gilthead sea bream (Sparus aurata) in the Adriatic Sea inferred with microsatellite loci. Aquaculture 318: 309–315. [Google Scholar]
  • Skaala O, Besnier F, et al. 2019. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol Appl 12: 1001–1016. [CrossRef] [PubMed] [Google Scholar]
  • Skaala O, Hoyheim B, et al. 2004. Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture 240: 131–143. [Google Scholar]
  • Somarakis S, Pavlidis M, et al. 2013. Evidence for 'escape through spawning' in large gilthead sea bream Sparus aurata reared in commercial sea-cages. Aquacult Env Interac 3: 135–152. [CrossRef] [Google Scholar]
  • Souche EL, Hellemans B, et al. 2015 Range-wide population structure of European sea bass Dicentrarchus labrax. Biolog J Linn Soc 116 : 86–105. [CrossRef] [Google Scholar]
  • Tine M, Kuhl H, et al. 2014. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat Commun 5: 5770. [PubMed] [Google Scholar]
  • Vandeputte M, Gagnaire PA, et al. 2019. The European sea bass: a key marine fish model in the wild and in aquaculture. Animal Genet 50: 195–206. [CrossRef] [Google Scholar]
  • Yang L, Waples RS, et al. 2019. Life history and temporal variability of escape events interactively determine the fitness consequences of aquaculture escapees on wild populations. Theor Popul Biol 129: 93–102. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.