Open Access
Review
Issue
Aquat. Living Resour.
Volume 37, 2024
Article Number 12
Number of page(s) 12
DOI https://doi.org/10.1051/alr/2024009
Published online 02 September 2024
  • Abdul Khalil HPS, Tye YY, Chow ST, Saurabh CK, Tahir PM, Dungani R, Syakir MI. 2017a. Cellulosic pulp fiber as reinforcement materials in seaweed-based film. BioResources 12: 29–42. [Google Scholar]
  • Abdul Khalil HPS, Tye YY, Saurabh CK, Leh CP, Lai T, Chong EWN, Nurul Fazita MR, Hafiidz JM, Banerjee A, Syakir MI. 2017b. Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. Express Polym Lett 11: 244–265. [CrossRef] [Google Scholar]
  • Aguilera-Morales M, Casas-Valdez M, Carrillo-Domínguez S, González-Acosta B, Pérez-Gil F. 2005. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. J Food Compos Anal 18: 79–88. [CrossRef] [Google Scholar]
  • Armitage CS, Husa V, Petelenz-Kurdziel EA, Sjotun K. 2017. Growth and competition in a warmer ocean: a field experiment with a non-native and two native habitat-building seaweeds. Mar Ecol Prog Ser 573: 85–99. [CrossRef] [Google Scholar]
  • Ask EI, Azanza RV. 2002. Advances in cultivation technology of commercial eucheumatoid species: a review with suggestions for future research. Aquaculture 206: 257–277. [CrossRef] [Google Scholar]
  • Athukorala Y, Lee K-W, Song C, Ahn C-B, Shin T-S, Cha Y-J, Shahidi F, Jeon Y-J. 2007. Potential antioxidant activity of marine red alga Grateloupia filicina extracts. J Food Lipids 10: 251–265. [Google Scholar]
  • Baer J, Stengel DB. 2014. Can native epiphytes affect establishment success of the alien seaweed Sargassum muticum (Phaeophyceae)? Biol Environ: Proc Royal Irish Acad 114: 41–52. [CrossRef] [Google Scholar]
  • Bahaa S, Al-Baldawi IA, Yaseen SR. 2019. Biosorption of heavy metals from synthetic wastewater by using macro algae collected from Iraqi Marshlands. J Ecol Eng 20: 18–22. [CrossRef] [Google Scholar]
  • Benjama O, Masniyom P. 2011. Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand. Songklanakarin J Sci Technol 33: 575–583. [Google Scholar]
  • Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Cone JW, López-Contreras AM. 2016. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28: 3511–3525. [CrossRef] [PubMed] [Google Scholar]
  • Bittick SJ, Clausing RJ, Fong CR, Scoma SR, Fong P. 2019. A rapidly expanding macroalga acts as a foundational species providing trophic support and habitat in the South Pacific. Ecosystems 22: 165–173. [CrossRef] [Google Scholar]
  • Bolton JJ, Robertson-Andersson DV, Shuuluka D, Kandjengo L. 2009. Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. J Appl Phycol 21: 575–583. [CrossRef] [Google Scholar]
  • Bouarab K, Potin P, Correa J, Kloareg B. 1999. Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. The Plant Cell 11: 1635–1650. [CrossRef] [PubMed] [Google Scholar]
  • Bringloe TT, Starko S, Wade RM, Vieira C, Kawai H, De Clerck O, Cock JM, Coelho SM, Destombe C, Valero M, Neiva J, Pearson GA, Faugeron S, Serrão EA, Verbruggen H. 2020. Phylogeny and evolution of the brown Algae. Crit Rev Plant Sci 39: 281–321. [CrossRef] [Google Scholar]
  • Buschmann AH. Gómez P. 1993. Interaction mechanisms between Gracilaria chilensis (Rhodophyta) and epiphytes. In Chapman ARO, Brown MT, Lahaye M (eds), Fourteenth International Seaweed Symposium. Developments in Hydrobiology 85. Dordrecht: Kluwer Academic Publishers. Reprinted from Hydrobiologia 260/261: 345-351 [Google Scholar]
  • Chai Z, Huo Y, He Q, Huang X, Jiang X, He P. 2014. Studies on breeding of Sargassum vachellianum on artificial reefs in Gouqi Island, China. Aquaculture 424–425: 189–193. [CrossRef] [Google Scholar]
  • Chen B, Gu Z, Wu M, Ma Z, Hooi Ren L, Khoo KS, Show PL. 2022. Advancement pathway of biochar resources from macroalgae biomass: a review. Biomass Bioenergy 167: 106650. [CrossRef] [Google Scholar]
  • Chen B, Zou D, Jiang H. 2015. Elevated CO2 exacerbates competition for growth and photosynthesis between Gracilaria lemaneiformis and Ulva lactuca. Aquaculture 443: 49–55. [CrossRef] [Google Scholar]
  • Chen B, Lin L, Ma Z, Zhang T, Chen W, Zou D. 2019. Carbon and nitrogen accumulation and interspecific competition in two algae species. Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions. Aquacult Int 27: 721–733. [CrossRef] [Google Scholar]
  • Chen B, Zou D. 2015. Altered seawater salinity levels affected growth and photosynthesis of Ulva fasciata (Ulvales, Chlorophyta) germlings. Acta Oceanolog Sin 34: 108–113. [CrossRef] [Google Scholar]
  • Costa GB, Simioni C, Pereira DT, Ramlov F, Maraschin M, Chow F, Horta PA, Bouzon ZL, Schmidt EC. 2017. The brown seaweed Sargassum cymosum: changes in metabolism and cellular organization after long-term exposure to cadmium. Protoplasma 254: 817–837. [CrossRef] [PubMed] [Google Scholar]
  • Dawes CJ, Teasdale BW, Friedlander M. 2000. Cell wall structure of the agarophytes Gracilaria tikvahiae and G. cornea (Rhodophyta) and penetration by the epiphyte Ulva lactuca (Chlorophyta). J Appl Phycol 12: 567–575. [CrossRef] [Google Scholar]
  • Denis C, Morancais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119: 913–917. [CrossRef] [Google Scholar]
  • FAO. 2021. Global Aquaculture Production. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en [Google Scholar]
  • Fei X. 2004. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512: 145–151. [CrossRef] [Google Scholar]
  • Gao G, Fu Q, Beardall J, Wu M, Xu J. 2019. Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza. Harmful Algae 85: 101698. [CrossRef] [Google Scholar]
  • Garbary DJ, Deckert RJ. 2002. Three part harmony-ascophyllum and its symbionts. In: Seckbach J [ed] Symbiosis: Mechanisms and Model Systems. Dordrecht: Springer Netherlands, p. 309–321. [Google Scholar]
  • Gauna MC, Escobar JF, Odorisio M, Cáceres EJ, Parodi ER. 2019. Spatial and temporal variation in algal epiphyte distribution on Ulva sp. (Ulvales, Chlorophyta) from northern Patagonia in Argentina. Phycologia 56: 125–135. [Google Scholar]
  • Gokulan R, Prabhu GG, Jegan J. 2019. Remediation of complex remazol effluent using biochar derived from green seaweed biomass. Int J Phytorem 21: 1179–1189. [CrossRef] [PubMed] [Google Scholar]
  • Gribben PE, Angelini C, Altieri AH, Bishop MJ, Thomsen MS, Bulleri F. 2019. Facilitation cascades in marine ecosystems: a synthesis and future directions. In: Hawkins, S.J., Allcock, A., Bates, A., Firth, L., Smith, I., Swearer, S., Todd, P. (Eds.), Oceanography and Marine Biology. New York: CRC Press, pp. 127–168. [CrossRef] [Google Scholar]
  • Guy-Haim T, Silverman J, Wahl M, Aguirre J, Noisette F, Rilov G. 2020. Epiphytes provide micro-scale refuge from ocean acidification. Mar Environ Res 161: 105093. [CrossRef] [PubMed] [Google Scholar]
  • Han T, Shi R, Qi Z, Huang H. 2021. The overgrowth of epiphytic Ulva prolifera during seedling cultivation of Sargassum hemiphyllum can be mitigated by regulating nitrogen availability. Aquaculture 543: 736930. [CrossRef] [Google Scholar]
  • Hasan M, Lai TK, Gopakumar DA, Jawaid M, Owolabi FAT, Mistar EM, Alfatah T, Noriman NZ, Haafiz MKM, Abdul Khalil HPS. 2019. Micro crystalline bamboo cellulose based seaweed biodegradable composite films for sustainable packaging material. J Polym Environ 27: 1602–1612. [CrossRef] [Google Scholar]
  • Holdt S, Kraan S. 2011. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23: 543–597. [CrossRef] [Google Scholar]
  • Huang R, Lee H. 2005. Immunological properties of the marine brown alga Endarachne binghamiae (Phaeophyceae). Int J Appl Sci Eng 3: 167–173. [Google Scholar]
  • Huo Y, Han H, Shi H, Wu H, Zhang J, Yu K. 2015. Changes to the biomass and species composition of Ulva sp. on Porphyra aquaculture rafts, along the coastal radial sandbank of the Southern Yellow Sea. Mar Pollut Bull 93: 210–216. [CrossRef] [PubMed] [Google Scholar]
  • Hwang EK, Amano H, Park CS. 2008. Assessment of the nutritional value of Capsosiphon fulvescens (Chlorophyta): developing a new species of marine macroalgae for cultivation in Korea. J Appl Phycol 20: 147–151. [CrossRef] [Google Scholar]
  • Hwang EK, Yoo HC, Baek JM, Park CS. 2015. Effect of pH and salinity on the removal of phytal animals during summer cultivation of Sargassum fusiforme and Sargassum fulvellum in Korea. J Appl Phycol 27: 1985–1989. [CrossRef] [Google Scholar]
  • Ismail GA. 2017. Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Sci Technol (Campinas) 37: 294–302. [CrossRef] [Google Scholar]
  • Ji R, Wu Y, Bian Y, Song Y, Sun Q, Jiang X. 2021. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. J Hazard Mater 407: 124785. [CrossRef] [PubMed] [Google Scholar]
  • Jia C, Yang B, Xie E. 2012. Studies on the prevention and cure for predators and rivals in artificial breeding of Sargassum naozhouense Tseng et Lu. J Aquacult 33: 35–39 (In Chinese). [Google Scholar]
  • Kang B, Kim M, Kim K, Ahn D. 2016. In vivo and in vitro inhibitory activity of an ethanolic extract of Sargassum fulvellum and its component grasshopper ketone on atopic dermatitis. Int Immunopharmacol 40: 176–183. [CrossRef] [PubMed] [Google Scholar]
  • Katiyar R, Patel AK, Nguyen T, Singhania RR, Chen C, Dong C. 2021. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour Technol 328: 124829. [CrossRef] [PubMed] [Google Scholar]
  • Kerrison PD, Le HN, Hughes AD. 2016. Hatchery decontamination of Sargassum muticum juveniles and adults using a combination of sodium hypochlorite and potassium iodide. J Appl Phycol 28: 1169–1180. [CrossRef] [Google Scholar]
  • Kim J, Kim W, Jeong H, Choi S, Seo J, Park MA, Oh MJ. 2017. A survey of epiphytic organisms in cultured kelp Saccharina japonica in Korea. Fish Aquatic Sci 20: 1–7. [CrossRef] [Google Scholar]
  • Korzen L, Abelson A, Israel A. 2016. Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28: 1835–1845. [CrossRef] [Google Scholar]
  • Kraan S. 2013. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitigat Adapt Strateg Global Change 18: 27–46. [CrossRef] [Google Scholar]
  • Kumari R, Kaur I, Bhatnagar AK. 2011. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol 23: 623–633. [CrossRef] [MathSciNet] [Google Scholar]
  • Latique S, Elouaer MA, Chernane H, Hannachi C, Elkaoua M. 2014. Effect of seaweed liquid extract of Sargassum vulgare on growth of durum wheat seedlings (Triticum durum L) under salt stress. Innov Space Sci Res J 7: 1430–1435 [Google Scholar]
  • Latique S, Mrid RB, Kabach I, Kchikich A, Sammama H, Yasri A. 2021. Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum l.). Agronomy (Basel) 11: 265. [CrossRef] [Google Scholar]
  • Le HN, Hughes AD, Kerrison PD. 2018. Early development and substrate twine selection for the cultivation of Sargassum muticum (Yendo) Fensholt under laboratory conditions. J Appl Phycol 30: 2475–2483. [CrossRef] [PubMed] [Google Scholar]
  • Leonardi PI, Miravalles AB, Faugeron S, Flores V, Beltrán J, Correa JA. 2006. Diversity, phenomenology and epidemiology of epiphytism in farmed. Eur J Phycol 41: 247–257. [CrossRef] [Google Scholar]
  • Li J, Wang X, Lin X, Yan G, Liu L, Zheng H, Zhao B, Tang J, Guo Y. 2018. Alginate-derived oligosaccharides promote water stress tolerance in cucumber (Cucumis sativus L.). Plant Physiol Biochem 130: 80–88. [CrossRef] [PubMed] [Google Scholar]
  • Li M, Ding G, Zhan D, Yu B, Liu W, Wu H. 2009a. A method for early production of large-size Sargassum thunbergii seedling in north China. Progr Fishery Sci 30: 75–82 (In Chinese). [Google Scholar]
  • Li S, Ye D, Guo W, Sun J. 2009b. Investigation and prevention of harmful organisms for the cultivation of Sargassum fusiforme (Harv.) Okam. Mod Fish Inf 24: 19–22 (In Chinese). [Google Scholar]
  • Liang Z, Sun X, Wang F, Wang W, Liu F. 2013. Impact of environmental factors on the photosynthesis and respiration of young seedlings of Sargassum thunbergii (Sargassaceae, Phaeophyta). Am J Plant Sci. 04: 27–33. [Google Scholar]
  • Lin Z, Li J, Luan Y, Dai W. 2020. Application of algae for heavy metal adsorption: a 20-year meta-analysis. Ecotoxicol Environ Saf 190: 110089. [CrossRef] [PubMed] [Google Scholar]
  • Lingakumar K, Jeyaprakash R, Manimuthu C, Haribaskar A. 2004. Influence of Sargassum sp. crude extract on vegetative growth and biochemical characteristics in Zea mays and Phaseolus mungo. Seaweed Res Utilisat 26: 155–160. [Google Scholar]
  • Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. 2019. Alginate oligosaccharides: production, biological activities, and potential applications. Compr Rev Food Sci F 18: 1859–1881. [CrossRef] [Google Scholar]
  • Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M. 2018. Total and inorganic arsenic contents in seaweeds absorption, accumulation, transformation and toxicity. Aquaculture 497: 49–55. [CrossRef] [Google Scholar]
  • Madkour A, Dar M. 2021. Biosorption of Cu and Zn in a batch system via dried macroalgae Halimeda opuntia and Turbinaria turbinata. Environ Res Eng Manag 77: 76–84. [CrossRef] [Google Scholar]
  • Masniyom P, Benjama O. 2012. Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Songklanakarin J Sci Technol 34: 223–230. [Google Scholar]
  • Müller DG, Eichenberger W. 1994. Betaine lipid content and species delimitation in Ectocarpus, Feldmannia and Hincksia (Ectocarpales, Phaeophyceae). Eur J Phycol 29: 219–225. [CrossRef] [Google Scholar]
  • Nakajima N, Ohki K, Kamiya M. 2015. Defense mechanisms of Sargassacean species against the epiphytic red alga Neosiphonia harveyi. J Appl Phycol 51: 695–705. [CrossRef] [PubMed] [Google Scholar]
  • Nakajima N, Sugimoto N, Ohki K, Kamiya M. 2016. Diversity of phlorotannin profiles among Sargassasacean species affecting variation and abundance of epiphytes. Eur J Phycol 51: 307–316. [Google Scholar]
  • Nayar S, Bott K. 2014. Current status of global cultivated seaweed production and markets. World Aquac 45: 32–37. [Google Scholar]
  • Ortiz J, Uquiche E, Robert P, Romero N, Quitral V, Llantén C. 2009. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur J Lipid Sci Technol 111: 320–327. [CrossRef] [Google Scholar]
  • Pang S, Liu F, Shan T, Gao S, Zhang Z. 2009. Cultivation of the brown alga Sargassum horneri: sexual reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J Appl Phycol 21: 413–422. [CrossRef] [Google Scholar]
  • Pang S, Zhang Z, Zhao H, Sun J. 2007. Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J Appl Phycol 19: 557–565. [CrossRef] [Google Scholar]
  • Pereira L. 2011. A review of the nutrient composition of selected edible seaweeds. In: Pomin VH (ed) Seaweed. Hauppauge: Nova Science Publishers, pp. 15–49. [Google Scholar]
  • Pikosz M, Czerwik-Marcinkowska J, Messyasz B. 2019. The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp. Open Chem 17: 313–324. [CrossRef] [Google Scholar]
  • Poo K, Son E, Chang J, Ren X, Choi Y, Chae K. 2018. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manag 206: 364–372. [CrossRef] [Google Scholar]
  • Radulovich R, Umanzor S, Cabrera R, Mata R. 2015. Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 436: 40–46. [CrossRef] [Google Scholar]
  • Redmond S, Kim JK, Yarish C, Pietrak M, Bricknell I. 2014. Culture of Sargassum in Korea: Techniques and potential for culture in the U.S. Orono, ME: Maine Sea Grant College Program. http://seagrant.umaine.edu/extension/korea-aquaculture [Google Scholar]
  • Roleda MY, Lage S, Fonn Aluwini D, Rebours C, Bente Brurberg M, Nitschke U. 2021. Corrigendum to “Chemical profiling of the Arctic sea lettuce Ulva lactuca (Chlorophyta) mass-cultivated on land under controlled conditions for food applications”. Food Chem 347: 129059. [CrossRef] [PubMed] [Google Scholar]
  • Sarvestani FS, Esmaeili H, Ramavandi B. 2016. Modification of Sargassum angustifolium by molybdate during a facile cultivation for high-rate phosphate removal from wastewater: structural characterization and adsorptive behavior. 3 Biotech 6: 251. [CrossRef] [PubMed] [Google Scholar]
  • Siddique MAM, Aktar M, Khatib MAM. 2013. Proximate chemical composition and amino acid profile of two red seaweeds (Hypnea pannosa and Hypnea musciformis) collected from St. Martin's Island, Bangladesh. J Fisheries Sci 7: 178–186. [Google Scholar]
  • Siniscalchi AG, Gauna MC, Cáceres EJ, Parodi ET. 2012. Myrionema strangulans (Chordariales, Phaeophyceae) epiphyte on Ulva spp. (Ulvophyceae) from Patagonian Atlantic coasts. J Appl Phycol 24: 475–486. [CrossRef] [Google Scholar]
  • Snoeijs P. 1994. Distribution of epiphytic diatom species composition, diversity and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Research 9: 189–211. [CrossRef] [Google Scholar]
  • Sridhar S, Rengasamy R. 2011. Potential of seaweed liquid fertilizers (SLFS) on some agricultural crop with special reference to protein profile of seedlings. Int J Dev Res 1: 5–7. [Google Scholar]
  • Strain EMA, Thomson RJ, Micheli F, Mancuso FP, Airoldi L. 2014. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to matforming algae in marine ecosystems. Glob Change Biol 20: 3300–3312. [CrossRef] [PubMed] [Google Scholar]
  • Strong JA, Maggs CA, Johnson MP. 2009. The extent of grazing release from epiphytism for Sargassum muticum (Phaeophyceae) within the invaded range. J Mar Biol Assoc U K 89: 303–314. [CrossRef] [Google Scholar]
  • Sureda A, Box A, Terrados J, Deudero S, Pons A. 2008. Antioxidant response of the seagrass Posidonia oceanica when epiphytized by the invasive macroalgae Lophocladia lallemandii. Mar Environ Res 66: 359–363. [CrossRef] [PubMed] [Google Scholar]
  • Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR. 2012a. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J Sci Food Agric 92: 2500–2506. [CrossRef] [PubMed] [Google Scholar]
  • Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR, Rabiei R. 2012b. Fatty acids, amino acids, mineral contents, and proximate composition of some brown seaweeds. J Phycol 48: 285–292. [CrossRef] [PubMed] [Google Scholar]
  • Tan IS, Lam MK, Foo HCY, Lim S, Lee KT. 2020. Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng 28: 502–517. [CrossRef] [Google Scholar]
  • Thirumaran G, Arumugam M, Arumugam R, Anantharaman P. 2009. Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) medikus. American-Eur J Agron 2: 57–66. [Google Scholar]
  • Tian S, Chen B, Wu M, Cao C, Gu Z, Zheng T, Zou D, Ma Z. 2023. Are there environmental benefits derived from coastal aquaculture of Sargassum fusiforme? Aquaculture 562: 738909. [CrossRef] [Google Scholar]
  • Tian S, Zheng T, Wu M, Cao C, Xu L, Gu Z, Chen B, Ma Z. 2022. Differences of photosynthesis and nutrient utilization in Sargassum fusiforme and its main epiphyte, Ulva lactuca. Aquacul Res 53: 3176–3187. [CrossRef] [Google Scholar]
  • Titlyanov EA, Titlyanova TV. 2013. Changes in the species composition of benthic macroalgal communities of the upper subtidal zone on a coral reef in Sanya Bay (Hainan Island, China) during 2009–2012. Russ J Mar Biol 39: 413–419. [CrossRef] [Google Scholar]
  • Tiwari B, Troy D. 2015. Seaweed sustainability: Food and non-food applications (1st ed.). Amsterdam, The Netherlands: Academic Press. [Google Scholar]
  • Wang LF, Shankar S, Rhim JW. 2017. Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63: 201–208. [CrossRef] [Google Scholar]
  • Wang Z, Xiao J, Fan S, Li Y, Liu X, Liu D. 2015. Who made the world's largest green tide in China? An integrated study on the initiation and early development of the green tide in Yellow Sea. 60: 1105–1117. [Google Scholar]
  • Ward GM, Faisan JP, Cottier-Cook EJ, Gachon C, Hurtado AQ, Lim PE. 2020. A review of reported seaweed diseases and pests in aquaculture in Asia. J World Aquacult Soc 51: 815–828. [CrossRef] [Google Scholar]
  • Williams SL, Smith JE. 2007. A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Ann Rev Ecol Evol Syst 38: 327–359. [CrossRef] [Google Scholar]
  • Wedchaparn O, Ayisi CL, Huo Y, He P. 2017. Effect of different temperature fluctuations and different initial concentrations of NO3-N and PO4-P on growth, nutrient uptake and photosynthetic efficiency of Gracilaria asiatica. Indian J Geo-Marine Sci 46: 1128–1134. [Google Scholar]
  • Wu H, Kim JK, Huo Y, Zhang J, He P. 2017. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China's radial sandbanks. Aquat Bot 137: 72–79. [CrossRef] [Google Scholar]
  • Xie C, Huang J, Sun B, Song W, Shin J-A, Ma J. 2009. Chemical composition of Porphyra haitanensis (Rhodophyta,Bangiales) in China. Chin J Mar Drugs 28: 29–35. [Google Scholar]
  • Xie E, Liu D, Jia C, Chen X, Yang B. 2013. Artificial seed production and cultivation of the edible brown alga Sargassum naozhouense Tseng et Lu. J Appl Phycol 25: 513–522. [CrossRef] [Google Scholar]
  • Xiong Y, Yang R, Sun X, Yang H, Chen H. 2018. Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. J Appl Phycol 30: 1225–1237. [CrossRef] [PubMed] [Google Scholar]
  • Xu L, Lin L, Luo L, Zuo X, Cao C, Jin X. 2022a. Organic acid treatment for removal of epiphytic Ulva L. attached to Sargassum fusiforme seedlings. Aquaculture 547: 737533. [CrossRef] [Google Scholar]
  • Xu L, Luo L, Zuo X, Cao C, Lin L, Zheng H, Ma Z, Chen B, Wu M. 2022b. Effects of temperature and irradiance on the regeneration of juveniles from the holdfasts of Sargassum fusiforme, a commercial seaweed. Aquaculture 557: 738317. [CrossRef] [Google Scholar]
  • Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H. 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128: 895–901. [CrossRef] [Google Scholar]
  • Yip ZT, Quek RZB, Huang D. 2020. Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). J Phycol 56: 300–309. [CrossRef] [PubMed] [Google Scholar]
  • Young CS, Gobler CJ. 2021. Coastal ocean acidification and nitrogen loading facilitate invasions of the non-indigenous red macroalga, Dasysiphonia japonica. Biol Invas 23: 1367–1391. [CrossRef] [Google Scholar]
  • Yu Z, Robinson SMC, Xia J, Sun H, Hu C. 2016. Growth, bioaccumulation and fodder potentials of the seaweed Sargassum hemiphyllum grown in oyster and fish farms of South China. Aquaculture 464: 459–468. [CrossRef] [Google Scholar]
  • Zhang C, Wang W, Zhao X, Wang H, Yin H. 2020. Preparation of alginate oligosaccharides and their biological activities in plants: a review. Carbohyd Res 494: 108056. [CrossRef] [Google Scholar]
  • Zhang Y, Liu F, Shan T, Pang S. 2009. Stress resistance of young seedlings of Sargassum horneri to a variety of temperatures, irradiances and salinities revealed by chlorophyll fluorescence measurements. South China Fisheries Science 5: 1–9 (In Chinese) [Google Scholar]
  • Zhao Z, Zhao F, Yao J, Lu J, Ang PO, Duan D. 2008. Early development of germlings of Sargassum thunbergii (Fucales, Phaeophyta) under laboratory conditions. J Appl Phycol 20: 475–481. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.