Free Access
Issue
Aquat. Living Resour.
Volume 34, 2021
Article Number 9
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2021007
Published online 09 April 2021
  • Aronsuu K, Huhmarniemi A. 2004. Changes in the European whitefish (Coregonus lavaretus (L.)) population of the Kalajoki—potential consequences of the alterations of fishing patterns in the Gulf of Bothnia. Ann Zool Fennici 41: 195–204. [Google Scholar]
  • Audzijonyte A, Richards SA, Stuart-Smith RD, Pecl G, Edgar GJ, Barrett NS, Payne N, Blanchard JL. 2020. Fish body sizes change with temperature but not all species shrink with warming. Nat Ecol Evol 4: 809–814. [PubMed] [Google Scholar]
  • Birkeland C, Dayton PK. 2005. The importance in fishery management of leaving the big ones. Trends Ecol Evol 20: 356–358. [PubMed] [Google Scholar]
  • Czerniejewski P, Rybczyk A. 2010. Growth rate and condition of population migratory common whitefish, (Coregonus lavaretus L.), from Oder estuary waters. Arch Pol Fish 18: 25–32. [Google Scholar]
  • Daufresne M, Lengfellner K, Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. PNAS 106: 12788–12793 [Google Scholar]
  • Elliot JM, Elliot JA. 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J Fish Biol 77: 1793–1817. [PubMed] [Google Scholar]
  • Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. 2011. Declining body size: a third universal response to warming? Trends Ecol Evol 26: 285–291. [PubMed] [Google Scholar]
  • Genner MJ, Sims DW, Southward AJ, Budd GC, Masterson P, McHugh M, Rendle P, Southall EJ, Wearmouth VJ, Hawkins SJ. 2010. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Global Change Biol 16: 517–527. [Google Scholar]
  • Hägerstrand H, Heimbrand Y, von Numers M, Lill J-O, Jokikokko E, Huhmarniemi A. 2017. Whole otolith elemental analysis reveals feeding migration patterns causing growth rate differences in anadromous whitefish from the Baltic Sea. Ecol Freshw Fish 26: 456–461. [Google Scholar]
  • Hansson S, Bergström U, Bonsdorff E, Härkönen T, Jepsen N, Kautsky L, Lundström K. 2017. Competition for the fish − fish extraction from the Baltic Sea by humans, aquatic mammals, and birds. ICES J Mar Sci 75: 999–1008. [Google Scholar]
  • Heikinheimo O, Mikkola J. 2004. Effect of selective gill-net fishing on the length distribution of European whitefish (Coregonus lavaretus) in the Gulf of Finland. Ann Zool Fennici 41: 357–366. [Google Scholar]
  • Heikinheimo O, Pekcan-Hekim Z, Raitaniemi J. 2014. Spawning stock-recruitment relationship in pikeperch Sander lucioperca (L.) in the Baltic Sea, with temperature as an environmental effect. Fish Res 155: 1–9. [Google Scholar]
  • Himberg M, von Numers M, Vasemägi A, Heselius SJ, Wiklund T, Lill JO, Hägerstrand H. 2015. Gill raker counting for approximating the ratio of river and seaspawning whitefish, Coregonus lavaretus (Actinopterygii: Salmoniformes: Salmonidae) in the Gulf ofBothnia, Baltic Sea. ActaIchthyologicaEtPiscatoria 45: 125–131. [Google Scholar]
  • Hurrell J, National Center for Atmospheric Research Staff (Eds.) 2016. Last modified 16 Aug. 2016. The climate Data Guide. Hurrell North Atlantic Oscillation (NAO) Index (Station-based). Retrieved from https://cliamtedataguide.ucar.edu/climate-data-hurrell-north-atlantic-oscillation-nao-index-station-based. [Google Scholar]
  • ICES. 2018. Interim Report of the Working Group on Introductions and Transfers of Marine Organisms (WGITMO), Madeira, Portugal, 7–9 March 2018, ICES CM 2018/HAPISG:11, pp. 179. [Google Scholar]
  • Jokikokko E, Huhmarniemi A. 2014. The large-scale stocking of young anadromous whitefish (Coregonus lavaretus) and corresponding catches of returning spawners in the River Tornionjoki, northern Baltic Sea. Fish Manag Ecol 21: 250–258. [Google Scholar]
  • Jokikokko E, Leskelä A, Huhmarniemi A. 2002. The effect of stocking size on the first winter survival of whitefish, Coregonus lavaretus (L.), in the Gulf of Bothnia, Baltic Sea. Fish Manag Ecol 9: 79–85. [Google Scholar]
  • Jokikokko E, Hägerstrand H, Lill J-O. 2018. Short feeding migration associated with a lower mean size of whitefish in the River Tornionjoki, northern Baltic Sea. Fish Manag Ecol 2018: 261–266. [Google Scholar]
  • Jokikokko E, Veneranta L, Huhmarniemi A. 2020. Pohjanlahden siika, in: J. Raitaniemi, K. Manninen (Eds.), Kalakantojen tila 2019 ja ennuste vuosille 2020 ja 2021, Luonnonvara- jabiotaloudentutkimus 46/2020, Luonnonvarakeskus, Helsinki, pp. 50–58. [Google Scholar]
  • Jonsson B, Jonsson N. 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J Fish Biol 75: 2381–2447. [PubMed] [Google Scholar]
  • Jonsson B, Jonsson N. 2016. Trans-generational maternal effect: temperature influences egg size of the offspring in Atlantic salmon Salmo salar. J Fish Biol doi: 10.111/jfb.13040. [PubMed] [Google Scholar]
  • Jonsson B, Jonsson N, Hansen, LP. 2005. Does climate during embryonic development influence parr growth and age of seaward migration in Atlantic salmon (Salmo salar)? Can J Fish Aqaut Sci 62: 2502–2508. [Google Scholar]
  • Jørgensen C, Ernande B, Fiksen Ø. 2009. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol Appl 2: 356–370. [PubMed] [Google Scholar]
  • Jutila E, Jokikokko E, Julkunen K. 2005. The smolt run and postsmolt survival of Atlantic salmon, Salmo salar L., in relation to early summer water temperatures in the northern Baltic. Ecol Freshw Fish 14: 69–78. [Google Scholar]
  • Jylhä K, Ruosteenoja K, Räisänen K, Venäläinen A, Tuomenvirta H, Ruokolainen L, Seitola S. 2009. Arvioita Suomen muuttuvasta ilmastosta sopeutumistutkimuksia varten. ACCLIM-hankkeenraportti 2009. Ilmatieteen Laitoksen Raportteja, 4: 102 [In Finnish] [Google Scholar]
  • Kallio-Nyberg I, Jutila E, Jokikokko E, Saloniemi I. 2006. Survival of reared Atlantic salmon and sea trout in relation to marine conditions of smolt year in the Baltic Sea. Fish Res 80: 295–304. [Google Scholar]
  • Kallio-Nyberg I, Saloniemi I, Veneranta L, Salminen M. 2018. Anadromous trout threatened by whitefish gill-net fisheries in the northern Baltic Sea. J Appl Ichthyol 34: 1145–1151. [Google Scholar]
  • Kallio-Nyberg I, Veneranta L, Saloniemi I, Jokikokko E. 2019. Different growth trends of whitefish (Coregonus lavaretus) forms in the northern Baltic Sea. J Appl Ichthyol 35: 683–691. [Google Scholar]
  • Kallio-Nyberg I, Veneranta L, Jokikokko E, Leskelä A. 2020. Vaellussiian pituus- ja ikäjakauma Pohjanlahden saaliissa 1981–2017 sekä 2013 alkaneen verkkokalastussäätelyn vaikutus siikakantoihin. Luonnonvara- ja biotalouden tutkimus 95/2020. Luonnonvarakeskus, Helsinki, 44 pp. ISBN 978-952-380-109-7 [In Finnish]. [Google Scholar]
  • Kaukoranta M, Koljonen M-L, Koskiniemi J, Pennanen J, Tammi J. 2000. Atlas of Finnish fishes, English summary. Distribution of lamprey, brook lamprey, salmon trout, Arctic charr, whitefish, vendace, grayling, asp, vimba, spined loach and bullhead, and status of the socks. Finnish Game and Fisheries Research Institute. Research Report. 40 p. ISBN: 951-776-287-9 [Google Scholar]
  • Kesteven GL. 1960. Manual of field methods in fisheries biology. FAO Man Fish Sci 1: 44–45. [Google Scholar]
  • Kokkonen E, Vainikka A, Heikinheimo O. 2015. Probabilistic maturation reaction norm trends reveal decreased size and age at maturation in an intensively harvested stock of pikeperch Sander luciaperca. Fish Res 167; 1–12. [Google Scholar]
  • Koljonen M.L, Veneranta L, Kallio-Nyberg I, Koskiniemi J, Jokikokko E. 2019. Pohjanlahden siikakantojen erilaistuminen ja merialueen siikasaaliiden alkuperä. Luonnonvara- ja biotalouden tutkimus −sarja. Luonnonvara- ja biotalouden tutkimus 56/ 2019, 52 pp [In Finnish] [Google Scholar]
  • Lehtonen H. 1981. Biology and stock assessments of Coregonids by the Baltic coast of Finland. Finnish Fish Res 3: 31–83. [Google Scholar]
  • Lehtonen H, Jokikokko E. 2002. Responses of anadromous European whitefish, Coregonus lavaretus (L.) to fishing in the Gulf of Bothnia. ArchivFürHydrobiologie. Special Issues. Adv Limnol 57: 669–676. [Google Scholar]
  • Lehtonen H, Nyberg K, Vuorinen PJ, Leskelä A. 1992. Radioactive strontium (85Sr) in marking whitefish [Coregonus lavaretus (L.)] larvae and the dispersal of larvae from river to sea. J Fish Biol 41: 417–423. [Google Scholar]
  • Leinonen T, Kallio-Nyberg I, Koljonen M-L, Veneranta L, Jokikokko, E. 2020. Pohjanlahden siikakantojen vaelluserot ja ikäluokkien kokoerot: Siikakantojen ekologisten ominaisuuksien tutkimus geneettisen kannantunnistuksen avulla. Luonnonvara- ja biotalouden tutkimus 51/2020, Luonnonvarakeskus. Helsinki, 32 s. [Google Scholar]
  • Leskelä A, Jokikokko E, Huhmarniemi A. 2002. Sea migration patterns of stocked anadromous European whitefish (Coregonus lavaretus L.) fingerlings. Arch Hydrobiol Spec Issues Adv Limnol 57: 119–128. [Google Scholar]
  • Leskelä A, Jokikokko E, Huhmarniemi A, Siira A, Savolainen H. 2004. Stocking results of spray-marked one-summer old anadromous European whitefish in the Gulf of Bothnia. Ann Zool Fenn 41: 171–179. [Google Scholar]
  • Mackenzie BR, Gislan H, Möllmann C, Köster FW. 2007. Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biol 13: 1348–1367. [Google Scholar]
  • Meier MHE, Döscher R, Halkka A. 2004. Simulated distributions of Baltic Sea-ice in warming climate and consequences for the winter habitat of the Baltic Ringed Seal. AMBIO 33: 249–256. [PubMed] [Google Scholar]
  • Neuheimer AP, Grønkjær P. 2012. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Global Change Biol 18: 1812–1822. [Google Scholar]
  • Nusslé S, Bornand CN, Wedekind C. 2009. Fishery-induced selection on an Alpine whitefish: quantifying genetic and environmental effects on individual growth rate. Evol Appl 2: 200–208. [PubMed] [Google Scholar]
  • Olsson J, Florin A-B, Mo K, Aho T, Ryman N. 2012. Genetic structure of whitefish (Coregonusmaraena) in the Baltic Sea. Estuar Coast Shelf S 97: 104–113. [Google Scholar]
  • OSF. 2020. Official Statistics Finland. Commercial Marine Fishery. Natural Resources Institute Finland, Helsinki. https://statdb.luke.fi/PXWeb/pxweb/fi/LUKE/LUKE__06%20Kala%20ja%20riista__02%20Rakenne%20ja%20tuotanto__02%20Kaupallinen%20kalastus%20merella/4_meri_saalis.px/ (accessed December 16, 2020) [Google Scholar]
  • Pankhurst NW, Munday PL. 2011. Effect of climate change on fish reproduction and early life history stages. Mar Freshw Res 62: 1015 [Google Scholar]
  • Pekcan-Hekim Z, Urho L, Auvinen H, Heikinheimo O, Lappalainen J, Raitaniemi J, Söderkultalahti P. 2011. Climate warming and pikeperch year-class catches in the Baltic Sea. Ambio 40: 447–456. [PubMed] [Google Scholar]
  • Perry AL, Low PJ, Ellis JR, Reynolds JD. 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915. [Google Scholar]
  • Price TD, Qvarnström A, Irwin DE. 2003. The role of phenotypic plasticity in driving genetic evolution. Proc R Soc London B 270: 1433–1440. [Google Scholar]
  • Räisänen J. 2017. Future Climate Change in the Baltic Sea Region and Environmental Impacts. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore79780190228620.013.634. [Google Scholar]
  • Salojärvi K. 1986. Review of whitefish (Coregonus lavaretus L. s.l.) fingerling rearing and stocking in Finland. Arch Hydrobiol Beih Ergebn Limnol 22: 99–114. [Google Scholar]
  • Saloniemi I, Jokikokko E, Kallio-Nyberg I, Jutila E, Pasanen P. 2004. Survival of reared and wild Atlantic salmon smolts: size matters more in bad years. ICES Journal of Marine Science 61: 782–787. [Google Scholar]
  • Säisä M, Rönn J, Aho T, Björklund M, Pasanen P, Koljonen M-L. 2008. Genetic differentiation among European whitefish ecotypes based on microsatellite data. Hereditas 145: 69–83. [PubMed] [Google Scholar]
  • Sheridan JA, Bickford D. 2011. Shrinking body size as an ecological response to climate change. Nat Clim Change 1: 401–406 [Google Scholar]
  • Siegel H, Gerth M. 2017. Sea surface temperature in the Baltic Sea in 2016. Baltic Sea Environment Fact Sheet 2017, Published on 12 October 2017. http://helcom.fi/baltic-sea-trends/environment-fact-sheets/hydrography/development-of-sea-surface-temperature-in-the-baltic-sea [Google Scholar]
  • Szczepkowski M, Szczepkowska N, Krywosz T, Wunderlich K, Stabiński R. 2010. Growth rate and reproduction of a brood stock of European whitefish (Coregonus lavaretus L.) from Lake Gaładuś under controlled rearing conditions. Arch Pol Fish 18: 3–11. [Google Scholar]
  • Söderlind A. 2004. Estimation of the seal-inflicted hidden damage in the net fishery for pike-perch and whitefish, Master thesis in Marine Zoology, Department of Marine Ecology, Göteborg University, pp. 13. [Google Scholar]
  • Todd CD, Hughes SL, Marshall T, MacLean JC, Lonergan ME, Biow EM, 2008. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Global Change Biol 14: 1–13. [Google Scholar]
  • Tverin M, Esparza-Salas R, Strömberg A, Tang P, Kokkonen I, Herrero A, Lundström K. 2019. Complementary methods assessing short and long-term prey of a marine top predator–Application to the grey seal-fishery conflict in the Baltic Sea. PloS one 14: e0208694. [PubMed] [Google Scholar]
  • Urho L. 2011. Kalasto-, kalakantamuutokset ja vieraslajit ilmaston muuttuessa. RKTL: ntyöraportteja 6/2011. [In Finnish] Assess method: www.rktl.fi/www/uploads/pdf/uudet%20julkaisut/tyoraportit/kalasto_ilmastomuutos. [Google Scholar]
  • Uusi-Heikkilä S, Whiteley AR, Kuparinen A, Matsumura S, Venturelli PA, Wolter C, Slate J, Primmer CR, Meinelt T, Killen SS, Bierbach D, Polverino G, Ludvig A, Arlinghaus R. 2015. The evolutionary legacy of size-selective harvesting extends from genes to populations. Evol Appl 8: 597–620. [PubMed] [Google Scholar]
  • Veneranta L, Hudd R, Vanhatalo J. 2013. Reproduction areas of sea-spawning coregonids reflect the environment in shallow coastal waters. Mar Ecol Prog Ser 477: 231–250. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.