Free Access
Issue
Aquat. Living Resour.
Volume 33, 2020
Article Number 4
Number of page(s) 10
DOI https://doi.org/10.1051/alr/2020005
Published online 05 May 2020
  • Anton A, Cebrian J, Duarte MC, Heck LK, Goff J. 2009. Low impact of hurricane Katrina on seagrass community structure and functioning in the northern Gulf of Mexico. Bull Mar Sci 85: 45–59. [Google Scholar]
  • Barillé L, Robin M, Harin N, Bargain A, Launeau P. 2010. Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquat Bot 92: 185–194. [Google Scholar]
  • Bourque AS., Kenworthy WJ, Fourqurean JW. 2015, Impacts of physical disturbance on ecosystem structure in subtropical seagrass meadows. Mar Ecol Prog Ser 540: 27–41. [Google Scholar]
  • Chen CF, Lau VK, Chang NB, Son NT, Tong PHS, Chiang SH. 2016. Multi-temporal change detection of seagrass beds using integrated Landsat TM/ETM+/OLI imageries in Cam Ranh Bay, Vietnam. Ecol Inf 35: 43–54. [CrossRef] [Google Scholar]
  • Cohen J. 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas 20: 37–46. [Google Scholar]
  • Colin PL. 2018. Thalassodendron ciliatum (Cymodoceaceae) in Palau: Occurrence, typhoon impacts and changes over time. Bot Mar 61: 537–546. [CrossRef] [Google Scholar]
  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remot Sens Environ 37: 35–46. [CrossRef] [Google Scholar]
  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO. 1991. Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus . Physiol Plant 82: 523–528. [Google Scholar]
  • Duarte CM, Borum J, Short FT, Walker DI. 2008. Seagrass ecosystems: their global status and prospects. In: Polunin NVC (Ed.) Aquatic Ecosystems: Trends and Global Prospects. Cambridge: Cambridge University Press, pp. 281–294. [CrossRef] [Google Scholar]
  • Duffy JP, Pratt L, Anderson K, Land PE, Shutler JD. 2018. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuar Coast Shelf Sci 200: 169–180. [Google Scholar]
  • Dung TTT, Cappuyns V, Swennen R, Vassilieva E, Phung NK. 2014. Leachability of arsenic and heavy metals from blasted copper slag and contamination of marine sediment and soil in Ninh Hoa district, south central of Vietnam. Appl Geochem 44: 80–92. [Google Scholar]
  • Fortes MD. 2012. Historical review of seagrass research in the Philippines. Coast Mar Sci 35: 178–181. [Google Scholar]
  • Fortes MD, Ooi JLS, Tan YM, Prathep A, Bujang JS, Yaakub SM. 2018. Seagrass in Southeast Asia: A review of status and knowledge gaps, and a road map for conservation. Bot Mar 63: 269–288. [CrossRef] [Google Scholar]
  • Fourqurean WJ, Rutten ML. 2004. The impact of hurricane Georges on soft-bottom, back reef communities: Site- and species-specific effects in south Florida seagrass beds. Bull Mar Sci 75: 239–257. [Google Scholar]
  • Fraser MW, Kendrick GA. 2017. Belowground stressors and long-term seagrass declines in a historically degraded seagrass ecosystem after improved water quality. Sci Rep 7: 14469. [CrossRef] [PubMed] [Google Scholar]
  • Gacia E, Duarte CM, Marbà N, Terrados J, Kennedy H, Fortes MD, Tri NH. 2003. Sediment deposition and production in SE-Asia seagrass meadows. Estuar Coast Shelf Sci 56: 909–919. [Google Scholar]
  • Govers LL, Lamers LPM, Bouma TJ, de Brouwer JHF, van Katwijk MM. 2014. Eutrophication threatens Caribbean seagrasses − an example from Curacao and Bonaire. Mar Pollut Bull 89: 481–486. [Google Scholar]
  • Hedley JD, Harborne AR, Mumby PJ. 2005. Simple and robust removal of sun glint for mapping shallow‐water benthos. Int J Remote Sens 26: 2107–2112. [Google Scholar]
  • Herbeck LS, Sollich M, Unger D, Holmer M, Jennerjahn TC. 2014. Impact of pond aquaculture effluents on seagrass performance in NE Hainan, tropical China. Mar Pollut Bull 85: 190–203. [Google Scholar]
  • Herbeck LS, Unger D, Wu Y, Jennerjahn TC. 2013. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China. Cont Shelf Res 57: 92–104. [Google Scholar]
  • Hiraoka KY, Omichi Y, Okada M. 2016. Recovery of natural Zostera bed after typhoon attacks and autonomous restoration of Zostera bed by backfilling old navigation channel at the mouth of Imazu river in Hiroshima Bay. J Jpn Soc Water Environ 39: 97–102 (in Japanese with English abstract) [CrossRef] [Google Scholar]
  • Honda K, Nakamura Y, Nakaoka M, Uy WH, Fortes MD. 2013. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PloS ONE 8: e65735. [CrossRef] [PubMed] [Google Scholar]
  • Hossain MS, Bujang JS, Zakaria MH, Hashim M. 2015. The application of remote sensing to seagrass ecosystems: An overview and future research prospects. Int J Remote Sens 36: 61–114. [Google Scholar]
  • Jaxion-Harm J, Saunders J, Speight MR. 2012. Distribution of fish in seagrass, mangroves and coral reefs: Life-stage dependent habitat use in Honduras. Rev Biol Trop 60: 683–698. [CrossRef] [PubMed] [Google Scholar]
  • Kim K, Choi JK, Ryu JH, Jeong HJ, Lee K, Park MG, Kim KY. 2015. Observation of typhoon-induced seagrass die-off using remote sensing. Estuar Coast Shelf Sci 154: 111–121. [Google Scholar]
  • Kirkman H, Kirkman JA. 2002. The management of seagrasses in Southeast Asia. Bull Mar Sci 71: 1379–1390. [Google Scholar]
  • Le AT, Nguyen DM. 2004. Present status of lobster cage culture in Vietnam. In: Williams KC (Ed.) Spiny lobster ecology and exploitation in the South China Sea region. ACIAR Proceedings, Vol 120. Australian Centre for International Agriculture Research, Canberra, pp. 21–25. [Google Scholar]
  • Lemmens J, Clapin G, Lavery P, Cary J. 1996. Filtering capacity of seagrass meadows and other habitats of Cockburn Sound, Western Australia. Mar Ecol Progr Ser 143: 187–200. [CrossRef] [Google Scholar]
  • Lyzenga DR. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Appl Optics 17: 379–383. [CrossRef] [PubMed] [Google Scholar]
  • McCloskey RM, Unsworth RKF. 2015. Decreasing seagrass density negatively influences associated fauna. PeerJ 3: e1053. [CrossRef] [PubMed] [Google Scholar]
  • McKenna S, Jarvis J, Sankey T, Reason C, Coles R, Rasheed M. 2015. Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J Biosci 40: 389–398. [CrossRef] [PubMed] [Google Scholar]
  • Montefalcone M, Albertelli G, Nike Bianchi C, Mariani M, Morri C. 2006. A new synthetic index and a protocol for monitoring the status of Posidonia oceanica meadows: A case study at Sanremo (Ligurian Sea, NW Mediterranean). Aquat Conserv 16: 29–42. [Google Scholar]
  • Nadiarti, Riani E, Djuwita I, Budiharsono S, Purbayanto A, Asmus H. 2012. Challenging for the seagrass management in Indonesia. J Coast Dev 15: 234–242. [Google Scholar]
  • Neckles HA, Kopp BS, Peterson BJ, Pooler PS. 2012. Integrating scales of seagrass monitoring to meet conservation needs. Estuar Coasts 35: 23–46. [CrossRef] [Google Scholar]
  • Neckles HA, Short FT, Barker S, Kopp BS. 2005. Disturbance of eelgrass Zostera marina by commercial mussel Mytilus edulis harvesting in Maine: Dragging impacts and habitat recovery. Mar Ecol Prog Ser 285: 57–73. [Google Scholar]
  • Nguyen XH, Nguyen NNT. 2014. Current status and trends of mangroves and seagrass in Van Phong Bay, Khanh Hoa province. Coll Mar Works 21: 201–211 (in Vietnamese with English abstract) [Google Scholar]
  • Nguyen XV, Pham TL, Nguyen NNT, Nguyen TH. 2010. Final report: Monitoring of seagrass beds, mangrove forests in Khanh Hoa province. Department of Natural Resource and Environment of Khanh Hoa province., 45 pp (in Vietnamese) [Google Scholar]
  • Nguyen XV, Tran MH, Le TD, Papenbrock J. 2017a. An assessment of heavy metal contamination on the surface sediment of seagrass beds at the Khanh Hoa Coast, Vietnam. Bull Environ Contam Toxicol 99: 728–734. [CrossRef] [PubMed] [Google Scholar]
  • Nguyen XV, Tran MH, Papenbrock J. 2017b. Different organs of Enhalus acoroides (Hydrocharitaceae) can serve as specific bioindicators for sediment contaminated with different heavy metals. S Afr J Bot 113: 389–395. [CrossRef] [Google Scholar]
  • Nordlund LM, Unsworth RKF, Gullström M, Cullen-Unsworth LC. 2018. Global significance of seagrass fishery activity. Fish Fisheries 19: 399–412. [CrossRef] [Google Scholar]
  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL. 2006. A global crisis for seagrass ecosystems. BioScience 56: 987–996. [Google Scholar]
  • Papenbrock J. 2012. Highlights in seagrasses' phylogeny, physiology, and metabolism: What makes them special? Int Scholar Res Netw Bot 2012: 15. [Google Scholar]
  • Pham HT, Nguyen HD, Nguyen XH, Nguyen TL. 2006, Study on the variation of seagrass population in coastal waters of Khanh Hoa Province, Vietnam. Coast Mar Sci 30: 167–173. [Google Scholar]
  • Poiner IR, Walker DI, Coles RG. 1989. Regional studies: Seagrasses of tropical Australia. In: Larkum AWD, McComb AJ, Shepherd SA (Eds.). Biology of Seagrasses: Aquatic Plant Studies 2. Amsterdam: Elsevier, pp. 279–303. [Google Scholar]
  • Preen AR, Lee Long WJ, Coles RG. 1995. Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52: 3–17. [Google Scholar]
  • Rattanachot E, Stankovic M, Aongsara S, Prathep A. 2018. Ten years of conservation efforts enhance seagrass cover and carbon storage in Thailand. Bot Mar 61: 441–452. [CrossRef] [Google Scholar]
  • Royo CL, Gérard P, Pergent-Martini C, Casazza G. 2010. Seagrass (Posidonia oceanica) monitoring in western Mediterranean: Implications for management and conservation. Envir Monit Assess 171: 365–380. [CrossRef] [Google Scholar]
  • Ruiz JM, Pérez M, Romero J. 2001. Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. Mar Pollut Bull 42: 749–760. [Google Scholar]
  • Sabol MB, Melton RE, Chamberlain R, Doering P, Haunert K. 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries 25: 133–141. [CrossRef] [Google Scholar]
  • Sagawa T, Boisnier E, Komatsu T, Mustapha KB, Hattour A, Kosaka N, Miyazaki S. 2010. Using bottom surface reflectance to map coastal marine areas: A new application method for Lyzenga's model. Int J Remote Sens 31: 3051–3064. [Google Scholar]
  • Schultz ST. 2008. Seagrass monitoring by underwater videography: Disturbance regimes, sampling design, and statistical power. Aquat Bot 88: 228–238. [Google Scholar]
  • Scott AL, York PH, Duncan C, Macreadie PI, Connolly RM, Ellis MT, Jarvis JC, Jinks KI, Marsh H, Rasheed MA. 2018. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front Plant Sci 9: 127. [CrossRef] [PubMed] [Google Scholar]
  • Short FT, Koch EW, Creed JC, Magalhães KM, Fernandez E, Gaeckle JL. 2006. SeagrassNet monitoring across the Americas: case studies of seagrass decline. Mar Ecol 27: 277–289. [Google Scholar]
  • Steward JS, Virnstein RW, Lasi MA, Morris LJ, Miller JD, Hall LM, Tweedale WA. 2006. The impacts of the 2004 hurricanes on hydrology, water quality, and seagrass in the central Indian River Lagoon, Florida. Estuar Coast 29: 954–965. [CrossRef] [Google Scholar]
  • Tu DV, de Montaudouin X, Blanchet H, Lavesque N. 2012. Seagrass burial by dredged sediments: benthic community alteration, secondary production loss, biotic index reaction and recovery possibility. Mar Pollut Bull 64: 2340–2350. [Google Scholar]
  • Uhrin AV, Fonseca SM. 2005, Effect of Caribbean spiny lobster traps on seagrass beds of the Florida Keys National Marine Sanctuary: Damage sssessment and evaluation of recovery. Am Fish Soc Symp 41: 579–588. [Google Scholar]
  • Uhrin AV, Turner MG. 2018. Physical drivers of seagrass spatial configuration: the role of thresholds. J Landsc Ecol 33: 2253–2272. [CrossRef] [Google Scholar]
  • Vanhellemont Q. 2019. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens Environ 225: 175–192. [Google Scholar]
  • Vanhellemont Q, Ruddick K. 2018. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens Environ 216: 586–597. [Google Scholar]
  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Jr., Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Nat Acad Sci USA 106: 12377–12381. [CrossRef] [Google Scholar]
  • Yang D, Huang D. 2011. Impacts of typhoons Tianying and Dawei on seagrass distribution in Xincun Bay, Hainan province, China. Acta Oceanol Sin 30: 32–39. [CrossRef] [Google Scholar]
  • Yang D, Yang C. 2009. Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing. Sensors 9: 830–844. [CrossRef] [Google Scholar]
  • Yang D, Yang C. 2014. Effects of typhoon on seagrass distribution. In: Tang DL, Sui G (Eds.), Typhoon Impact and Crisis Management. Berlin: Springer-Verlag, pp. 253–266. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.