Open Access
Aquat. Living Resour.
Volume 33, 2020
Article Number 3
Number of page(s) 12
Published online 20 April 2020
  • Arts MT, Ackman RG, Holub BJ. 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58: 122–137. [Google Scholar]
  • Battaglene SC, Seymour JE, Ramofafia C. 1999. Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra . Aquaculture 178: 293–322. [Google Scholar]
  • Bell JD, Agudo NN, Purcell SW, Blazer P, Simutoga M, Pham D, Della Patrona L. 2007. Grow-out of sandfish Holothuria scabra in ponds shows that co-culture with shrimp Litopenaeus stylirostris is not viable. Aquaculture 273: 509–519. [Google Scholar]
  • Burford MA, Peterson EL, Baiano JCF, Preston NP. 1998. Bacteria in shrimp pond sediments: their role in mineralizing nutrients and some suggested sampling strategies. Aquac Res 29: 843–849. [Google Scholar]
  • Chen Y, Hu C, Ren C. 2015a. Application of wet waste from shrimp (Litopenaeus vannamei) with or without sea mud to feeding sea cucumber (Stichopus monotuberculatus). J Ocean Univ China 14: 114–120. [CrossRef] [Google Scholar]
  • Chen Y, Luo P, Hu C, Ren C. 2015b. Effect of shrimp (Litopenaeus vannamei) farming waste on the growth, digestion, ammonium-nitrogen excretion of sea cucumber (Stichopus monotuberculatus). J Ocean Univ China 14: 484–490. [CrossRef] [Google Scholar]
  • Core Team R. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at [Google Scholar]
  • Cripps GC, Atkinson A. 2000. Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba . Can J Fish Aquat Sci 57: 31–37. [Google Scholar]
  • Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46: 225–340. [CrossRef] [PubMed] [Google Scholar]
  • Della Patrona L, Brun P. 2008. Elevage de la Crevette Bleue en Nouvelle-Calédonie Litopenaeus stylirostris: bases biologiques et zootechnie. Dép. LEAD Lab. Ecosystème Aquac. Durable En Nouv. −Caléd. [Google Scholar]
  • DeNiro MJ, Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42: 495–506. [Google Scholar]
  • Drazen JC, Phleger CF, Guest MA, Nichols PD. 2008. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications. Comp Biochem Physiol B Biochem Mol Biol 151: 79–87. [CrossRef] [PubMed] [Google Scholar]
  • Feng J-X., Gao Q-F., Dong S-L., Sun Z-L., Zhang K. 2014. Trophic relationships in a polyculture pond based on carbon and nitrogen stable isotope analyses: a case study in Jinghai Bay, China. Aquaculture 428: 258–264. [Google Scholar]
  • Gao Q-F, Wang Y, Dong S, Sun Z, Wang F. 2011. Absorption of different food sources by sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): evidence from carbon stable isotope. Aquaculture 319: 272–276. [Google Scholar]
  • Gorokhova E, Hansson S. 1999. An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer . Can J Fish Aquat Sci 56: 2203–2210. [Google Scholar]
  • Hochard S, Ducrocq M, Lemonnier H, Royer F, Hubert M, Michaut H, Verge R, Letourneur Y, Lorrain A, Mathieu-Resuge M. 2016. Holothurie: Lien entre performances de production et de bioremédiation dans le contexte de la crevetticulture en Nouvelle-Calédonie. Projet Hobical. [Google Scholar]
  • Kaneniwa M, Itabashi Y, Endo S, Takagi T. 1986. Fatty acids in Holothuroidea: occurrence of cis-14-tricosenoic acid. Comp Biochem Physiol Part B Comp Biochem 84: 451–455. [CrossRef] [Google Scholar]
  • Kelly JR, Scheibling RE. 2012. Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446: 1–22. [Google Scholar]
  • Kharlamenko VI, Kiyashko SI, Imbs AB, Vyshkvartzev DI. 2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Mar Ecol Prog Ser 220: 103–117. [Google Scholar]
  • Khatoon H, Yusoff F, Banerjee S, Shariff M, Bujang JS. 2007. Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture 273: 470–477. [Google Scholar]
  • Kolasinski J, Nahon S, Rogers K, Chauvin A, Bigot L, Frouin P. 2016. Stable isotopes reveal spatial variability in the trophic structure of a macro‐benthic invertebrate community in a tropical coral reef. Rapid Commun Mass Spectr 30: 433–446. [CrossRef] [Google Scholar]
  • Le Grand F, Soudant P, Marty Y, Le Goïc, N, Kraffe E. 2013. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastodermaedule) affected by disseminated neoplasia. Chemistry and physics of lipids 167: 9–20. [CrossRef] [PubMed] [Google Scholar]
  • Lemonnier H. 2007. Effet des conditions environnementales sur le développement des pathologies à Vibrio dans les élevages de crevettes en Nouvelle-Calédonie. La Rochelle. [Google Scholar]
  • Lemonnier H, Courties C, Mugnier C, Torréton J-P., Herbland A. 2010. Nutrient and microbial dynamics in eutrophying shrimp ponds affected or unaffected by vibriosis. Mar Pollut Bull 60: 402–411. [PubMed] [Google Scholar]
  • Lemonnier H, Herbland A, Salery L, Soulard B. 2006. “Summer syndrome” in Litopenaeus stylirostris grow out ponds in New Caledonia: zootechnical and environmental factors. Aquaculture 261: 1039–1047. [Google Scholar]
  • Li J, Dong S, Gao Q, Wang F, Tian X, Zhang S. 2014a. Total organic carbon budget of integrated aquaculture system of sea cucumber Apostichopus japonicus, jellyfish Rhopilema esculenta and shrimp Fenneropenaeus chinensis . Aquac Res 45: 1825–1831. [Google Scholar]
  • Li J, Dong S, Gao Q, Zhu C. 2014b. Nitrogen and phosphorus budget of a polyculture system of sea cucumber (Apostichopus japonicus), jellyfish (Rhopilema esculenta) and shrimp (Fenneropenaeus chinensis). J Ocean Univ China 13: 503–508. [CrossRef] [Google Scholar]
  • Lutz CG. 2003. Polyculture: principles, practices, problems and promise. Aquac Mag 29: 34–39. [Google Scholar]
  • MacTavish T, Stenton-Dozey J, Vopel K, Savage C. 2012. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PloS ONE 7: e50031. [CrossRef] [PubMed] [Google Scholar]
  • Mangion P, Taddei D, Conand C, Frouin P. 2004. Feeding rate and impact of sediment reworking by two deposit feeders Holothuria leucospilota and Holothuria atra on a fringing reef (Reunion Island, Indian Ocean). Echinoderms Munchen 52: 311–317. [CrossRef] [Google Scholar]
  • Marty Y, Delaunay F, Moal J, Samain, JF. 1992. Changes in the fatty acid composition of Pectenmaximus (L.) during larval development. Journal of Experimental Marine Biology and Ecology 163: 221–234. [Google Scholar]
  • Meziane T, Tsuchiya M. 2000. Fatty acids as tracers of organic matter in the sediment and food web of a mangrove/intertidal flat ecosystem, Okinawa, Japan. Mar Ecol Prog Ser 200: 49–57. [Google Scholar]
  • Milstein A. 2005. 10 Effect of Periphyton on Water Quality. Periphyton Ecol Exploit Manag 179. [CrossRef] [Google Scholar]
  • Moriarty DJW. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Mar Freshw Res 33: 255–263. [Google Scholar]
  • Neofitou N, Lolas A, Ballios I, Skordas K, Tziantziou L, Vafidis D. 2019. Contribution of sea cucumber Holothuria tubulosa on organic load reduction from fish farming operation. Aquaculture 501: 97–103. [Google Scholar]
  • Orozco ZGA, Sumbing JG, Lebata‐Ramos MJH, Watanabe S. 2014, Apparent digestibility coefficient of nutrients from shrimp, mussel, diatom and seaweed by juvenile Holothuria scabra Jaeger. Aquac Res 45: 1153–1163. [Google Scholar]
  • Pinnegar JK, Polunin NVC. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol 13: 225–231. [Google Scholar]
  • Pitt R, Duy NDQ, Duy TV, Long HTC. 2004. Sandfish (Holothuria scabra) with shrimp (Penaeus monodon) co-culture tank trials. SPC Beche–Mer Inf Bull 20: 12–22. [Google Scholar]
  • Purcell SW. 2004. Rapid growth and bioturbation activity of the sea cucumber Holothuria scabra in earthen ponds. Proc Australas Aquac 1: 244. [Google Scholar]
  • Purcell SW, Patrois J, Fraisse N. 2006. Experimental evaluation of co‐culture of juvenile sea cucumbers, Holothuria scabra (Jaeger), with juvenile blue shrimp, Litopenaeus stylirostris (Stimpson). Aquac Res 37: 515–522. [Google Scholar]
  • Roberts D, Gebruk A, Levin V, Manship BAD. 2003. Feeding and digestive strategies in deposit-feeding holothurians. Oceanogr Mar Biol Annu Rev 38: 257–310. [Google Scholar]
  • Robinson G, Caldwell GS, Jones CL, Slater MJ, Stead SM. 2015. Redox stratification drives enhanced growth in a deposit-feeding invertebrate: implications for aquaculture bioremediation. Aquac Environ Interact 8: 1–13. [Google Scholar]
  • Robinson G, Caldwell GS, Jones CL, Stead SM. 2019. The effect of resource quality on the growth of Holothuria scabra during aquaculture waste bioremediation. Aquaculture 499: 101–108. [Google Scholar]
  • Robinson G, Caldwell GS, Wade MJ, Free A, Jones CL, Stead SM. 2016. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes. Sci Rep 6: 38850. [CrossRef] [PubMed] [Google Scholar]
  • Robinson G, MacTavish T, Savage C, Caldwell GS, Jones CL, Probyn T, Eyre BD, Stead SM. 2018. Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste. Biogeosciences 15: 1863–1878. [Google Scholar]
  • Sadeghi‐Nassaj SM, Batanero GL, Mazuecos IP, Alonso C, Reche I. 2018, Sea cucumbers reduce nitrogen, bacteria and transparent exopolymer particles in Anemonia sulcata aquaculture tanks. Aquac Res 49: 3669–3681. [Google Scholar]
  • Slater MJ, Carton AG. 2007. Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272: 389–398. [Google Scholar]
  • Slater MJ, Carton AG. 2010, Sea cucumber habitat differentiation and site retention as determined by intraspecific stable isotope variation. Aquac Res 41: e695–e702. [Google Scholar]
  • Slater MJ, Lassudrie M, Jeffs AG. 2011. Method for determining apparent digestibility of carbohydrate and protein sources for artificial diets for juvenile sea cucumber, Australostichopus mollis . J World Aquac Soc 42: 714–725. [Google Scholar]
  • Soto D. 2009. Integrated mariculture: a global review. Food and Agriculture Organization of the United Nations (FAO). [Google Scholar]
  • Soudant P, Van Ryckeghem K, Marty Y, Moal J, Samain JF, Sorgeloos P. 1999. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea gigas . Comp Biochem Physiol B 123: 209–222. [Google Scholar]
  • Vander Zanden MJ, Rasmussen JB. 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46: 2061–2066. [Google Scholar]
  • Vanderklift MA, Ponsard S. 2003. Sources of variation in consumer-diet δ 15 N enrichment: a meta-analysis. Oecologia 136: 169–182. [CrossRef] [PubMed] [Google Scholar]
  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128: 219–240. [Google Scholar]
  • Watanabe S, Kodama M, Zarate JM, Lebata-Ramos MJ, Nievales MF. 2012. Ability of sandfish (Holothuria scabra) to utilise organic matter in black tiger shrimp ponds. Proc Asia Pac Trop Sea Cucumber Aquac Aust Cent Int Agric Res Canberra 113–120. [Google Scholar]
  • Watanabe S, Sumbing JG, Lebata-Ramos MJH. 2014. Growth pattern of the tropical sea cucumber, Holothuria scabra, under captivity. Jpn Agric Res Q 48: 457–464. [CrossRef] [Google Scholar]
  • Xu G, Zhu S. 2002. Technique for polyculture of shrimp and sea cucumber. China Fish 6: 42–43. [Google Scholar]
  • Yokoyama H. 2013. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages—potential for integrated multi-trophic aquaculture. Aquaculture 372: 28–38. [Google Scholar]
  • Yu H-B, Gao Q-F, Dong S-L, Wen B. 2015. Changes in fatty acid profiles of sea cucumber Apostichopus japonicus (Selenka) induced by terrestrial plants in diets. Aquaculture 442: 119–124. [Google Scholar]
  • Zamora LN, Jeffs AG. 2015. Macronutrient selection, absorption and energy budget of juveniles of the A ustralasian sea cucumber, A ustralostichopus mollis, feeding on mussel biodeposits at different temperatures. Aquac Nutr 21: 162–172. [Google Scholar]
  • Zamora LN, Yuan X, Carton AG, Slater MJ. 2016. Role of deposit‐feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges. Rev Aquac 10: 900. [Google Scholar]
  • Zhang L, Song X, Hamel J-F., Mercier A. 2015. Aquaculture, stock enhancement, and restocking. In: Developments in Aquaculture and Fisheries Science. Elsevier, pp. 289–322. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.