Free Access
Aquat. Living Resour.
Volume 30, 2017
Article Number 34
Number of page(s) 11
Published online 12 September 2017
  • Arnold G, Dewar H. Electronic tags in marine fisheries research: a 30-year respective, in: Electronic tagging and tracking in marine fisheries, Springer, Netherlands, 2001, pp. 7–64. [CrossRef] [Google Scholar]
  • Arrizabalaga H, Pereira JG, Royer F, Galuardi B, Goñi N, Artetxe I, Arregi I, Lutcavage M. 2008. Bigeye tuna (Thunnus obesus) vertical movements in the Azores Islands determined with pop-up satellite archival tags. Fish Ocean 17: 74–83. [CrossRef] [Google Scholar]
  • Bayliff WH. 1984. Migrations of yellowfin and skipjack tuna released in the central portion of the eastern Pacific Ocean, as determined by tagging experiments. Bull Int Am Trop Comm 18: 107. [Google Scholar]
  • Blank JM, Morrissette JM, David PS, Block BA. 2002. Effects of temperature, epinephrine and Ca2+ on the hearts of yellowfin tuna (Thunnus albacares). J Exp Biol 205: 1881–1888. [PubMed] [Google Scholar]
  • Block BA, Keen JE, Castillo B, Dewar H, Freund EV, Marcinek DJ, Brill RW, Farwell C. 1997. Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar Biol 130: 119–132. [CrossRef] [Google Scholar]
  • Block B, Dewar H, Carey F. 1998. A new satellite technology for tracking the movements of Atlantic bluefin tuna. Proc Natl Acad Sci USA 95: 9384–9389. [CrossRef] [PubMed] [Google Scholar]
  • Brill RW, Holts DB, Chang RKC, Sullivan S, Dewar H, Carey FG. 1993. Vertical and horizontal movements of striped marlin (Tetrapturus audax) near the Hawaiian Islands, determined by ultrasonic telemetry, with simultaneous measurement of oceanic currents. Mar Biol 117: 567–574. [CrossRef] [Google Scholar]
  • Brill R. 1994. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish Oceanogr 3: 204–216. [CrossRef] [Google Scholar]
  • Brill RW, Lutcavage M. 2001. Understanding environmental influences on movements and depth distribution of tuna and billfishes can significantly improve population assessments. Am Fish Soc Symp 25: 179–198. [Google Scholar]
  • Brill RW, Block BA, Boggs CH, Bigelow KA, Freund EV, Marcinek DJ. 1999. Horizontal movement and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Island, recorded using ultrasonic telemetry: implications for the physiological ecology pelagic fishes. Mar Biol 133: 395–408. [CrossRef] [Google Scholar]
  • Brill RW, Bigelow KA, Musyl MK, Fritsches KA, Warrant EJ. 2005. Bigeye tuna (Thunnus obesus) behaviour and physiology and their relevance to stock assessments and fishery biology. ICCAT Coll Vol Sci Pap 57, 142–161. [Google Scholar]
  • Bushnell P, Brill R, Bourke R. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions of ambient oxygen. Can J Zool 68: 1857–1865. [CrossRef] [Google Scholar]
  • Carey FG, Olson RJ. 1982. Sonic tracking experiments with tunas. International Commission for the Conservation of Atlantic tunas, Madrid. ICCAT Coll Vol Sci Pap 17: 458–466. [Google Scholar]
  • Cayre P, Marsac F. 1993. Modelling the yellowfin tuna (Thunnus albacares) vertical distribution using sonic tagging results and local environmental parameters. Aquat Living Res 6: 1–14. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chiang WC, Musyl MK, Sun CL, Chen SY, Chen WY, Liu DC, Su WC, Yeh SZ, Fu SC, Huang TL. 2011. Vertical and horizontal movements of sailfish (Istiophorus platypterus) near Taiwan determined using pop-up satellite tags. J Exp Mar Biol Ecol 397: 129–135. [CrossRef] [Google Scholar]
  • Collette BB, Nauen CE. FAO species catalogue. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date, in: FAO Fish. Synop., 1983, vol. 125, no. 2, 137 pp. [Google Scholar]
  • Dagorn L, Holland KN, Hallier JP, Taqut M, Moreno G, Sancho G, Itano DG, Aumeeruddy R, Girard C, Million J, Fonteneau A. 2006. Deep diving behaviour observed in yellowfin tuna (Thunnus albacares). Aquat Living Res 19: 85–88. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dizon AE, Brill RW. 1979. Thermoregulation in yellowfin tuna, Thunnus albacares. Physiol Zool 52: 581–593. [CrossRef] [Google Scholar]
  • Fink BD, Bayliff WH. 1970. Migrations of yellowfin and skipjack tuna in the eastern Pacific Ocean, as determined by tagging experiments, 1952–1964. Bull Int Am Trop Comm 15: 1–227. [Google Scholar]
  • Fonteneau A. 1998. Introduction aux problèmes des relations thons-environnement dans l'Atlantique. ICCAT Coll Vol Sci Pap 50: 275–318. [Google Scholar]
  • Game ET, Grantham HS, Hobday AJ. 2010. Pelagic MPAs: the devil you know. Trends Ecol Evol 25: 63–64. [CrossRef] [Google Scholar]
  • Graham JG. 1975. Heat exchange in the yellowfin tuna, Thunnus albacares, and skipjack tuna, Katsuwonus pelamis, and the adaptive significance of elevated body temperatures. Fish Bull 72: 219–229. [EDP Sciences] [Google Scholar]
  • Gunn J, Block B. Advances in acoustic, archival and satellite tagging of tunas, in: B.A. Block, E.D. Stevens (Eds.), Tunas: physiology, ecology and evolution, Academic Press, San Diego, CA, 2001, pp. 167–224. [CrossRef] [Google Scholar]
  • Hays GC. 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503: 163–170. [CrossRef] [Google Scholar]
  • Hays GC, Bradshaw CJA, James MC, Lovell P, Sims DW. 2007. Why do Argos satellite tags deployed on marine animals stop transmitting? J Exp Mar Biol Ecol 349: 52–60. [CrossRef] [Google Scholar]
  • Hilborn R, Sibert J. 1988. Is international management of tuna necessary? Mar Policy 12: 31–39. [CrossRef] [Google Scholar]
  • Hilborn R, Stokes TK, Maguire JJ. 2004. When can marine reserves improve fisheries management? Ocean Coast Manag 47: 197–205. [CrossRef] [Google Scholar]
  • Holland KN, Brill RW, Chang R. 1990. Horizontal and vertical movements of yelowfin tuna and bigeye tuna associated with fish aggregating devices. Fish Bull 88: 493–507. [Google Scholar]
  • Holland K, Brill R, Chang R, Sibert J, Fournier D. 1992. Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358: 410–412. [CrossRef] [PubMed] [Google Scholar]
  • Holland K, Grubbs B, Graham D, Itano D, Dagorn L. The biology of FAD-associated tuna: temporal dynamics for association and feeding ecology, in: WP YFT-7, Mooloolaba, Australia, 9–16 July 2003, 2003. [Google Scholar]
  • Hoolihan JP, Luo J, Abascal FJ, Campana SE, De Metrio G, Dewar H, Domier ML, Howey LA, Lutcavage ME, Musyl MK, Neilson JD, Orbesn ES, Prince ED, Rooker JR. 2011. Evaluating post-release behaviour modification in large pelagic fish deployed with pop-up satellite archival tags. ICES J Mar Sci 68: 880–889. [CrossRef] [Google Scholar]
  • Hunter JR, Mitchell CT. 1967. Association of fishes with flotsam in offshore waters of Central America. US Fish Wildl Serv Fish Bull 66: 13–29. [Google Scholar]
  • Itano DG, Buckley TW. Report on the fish aggregating device (FAD) program in American Samoa (1979 to November 1987), Unpublished Rep, Department of Marine and Wildlife Resources, Pago Pago, Am. Samoa, 1987, 49 pp. [Google Scholar]
  • Itano DG, Williams PG. Analysis of yellowfin tuna tagging data and related information collected by the skipjack survey and assessment program, Tuna and Billfish Assessment Programme Technical Report 28, South Pacific Commission, 1992. [Google Scholar]
  • Itano DG, Holland KN. 2000. Movement and vulnerability of bigeye (Thunnus obesus) and yellowfin tuna (Thunnus albacares) in relation to FADs and natural aggregation points. Aquat Living Resour 13: 213–223. [CrossRef] [Google Scholar]
  • Josse E, Bach P, Dagorn L. 1998. Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys. Hydrobiologia 371: 61–69. [CrossRef] [Google Scholar]
  • Kleiber P, Hampton J. 1994. Modeling effects of FADs and islands on movement of skipjack tuna (Katsuwonus pelamis): estimating parameters from tagging data. Can J Fish Aquat Sci 51(12): 26422–26653. [CrossRef] [Google Scholar]
  • Korsmeyer KE, Lai NC, Shadwick RE, Graham JB. 1997. Heart rate and stroke volume contributions to cardiac output in swimming yellowfin tuna: response to exercise and temperature. J Exp Biol 20: 1975–1986. [Google Scholar]
  • Lam CH, Nielsen A, Sibert JR. 2008. Improving light and temperature based geolocation by unscented Kalman filtering. Fish Res 91: 15–25. [CrossRef] [Google Scholar]
  • Lam CH, Galuardi B, Lutcavage ME. 2014. Movements and oceanographic associations of bigeye tuna (Thunnus obesus) in the Northwest Atlantic. Can J Fish Aquat Sci 71: 1–15. [CrossRef] [Google Scholar]
  • Lehodey P, Andre JM, Bertignac M, Hampton J, Stoens A, Menkes C, Memery L, Grima N. 1998. Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fish Oceanogr 7: 317–325. [CrossRef] [Google Scholar]
  • Longhurst AR. 1967. The pelagic phase of Pleuroncodes planipes Stimpson (Crustacea, Galatheidae) off California. Calif Coop Ocean Fish Investig Rep 11: 142–154. [Google Scholar]
  • Marchal E, Gerlotto F, Stequert B. 1993. On the relationship between scattering layer, thermal structure and tuna abundance in the Eastern Atlantic equatorial current system. Oceanol Acta 16: 261–272. [Google Scholar]
  • Ménard F, Stéquert B, Rubin A, Herrera M, Marchal E. 2000. Food consumption of tunas in the Equatorial Atlantic: FAD associated versus unassociated schools. Aquat Living Res 13: 233–240. [CrossRef] [Google Scholar]
  • Murphy GI, Shomura RS. 1972. Pre-exploitation abundance of tunas in the equatorial central Pacific. Fish Bull 70: 875–913. [Google Scholar]
  • Musyl MK, Brill R.W, Boggs CH, Curran DS, Kazama TK, Seki MP. 2003. Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish Oceanogr 12: 152–169. [CrossRef] [Google Scholar]
  • Nakagome J. 1978. The study of relation between tuna and oceanography. Bull Jpn Soc Fish Oceanogr 44: 231–234. [CrossRef] [Google Scholar]
  • Neill WH, Chang RKC, Dizon AE. 1976. Magnitude and ecological implications of thermal inertia in skipjack tuna, Katsuwonus pelamis (Linnaeus). Environ Biol Fish 1: 61–80. [CrossRef] [Google Scholar]
  • Nielsen A, Bigelow KA, Musyl MK, Sibert JR. 2006. Improving light‐based geolocation by including sea surface temperature. Fish Oceanogr 15: 314–325. [CrossRef] [Google Scholar]
  • Rooker JR, David Wells RJ, Itano DG, Thorrold SR, Lee JM. 2016. Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fish Oceanogr 25: 277–291. [CrossRef] [Google Scholar]
  • Schaefer KM, Fuller DW, Block BA. 2007. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar Biol 152: 503–525. [CrossRef] [Google Scholar]
  • Schaefer KM, Fuller DW, Gabriel A. 2014. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in waters surrounding the Revillagigedo island Archipelago biosphere reserve, Mexico. Fish Oceanogr 23: 65–82. [CrossRef] [Google Scholar]
  • Schopka SA, Solmundsson J, Ragnarsson SA, Thorsteinsson V. 2010. Using tagging experiments to evaluate the potential of closed areas in protecting migratory Atlantic cod (Gadus morhua). ICES J Mar Sci 67: 1024–1035. [CrossRef] [Google Scholar]
  • Shih NT, Huang L, Cai YH, Ni IH. 2009. Fishing efficiency of the Taiwanese offshore tuna longline fishery. J Fish Soc Taiwan 36: 77–89. [Google Scholar]
  • Sibert J, Hampton J. 2003. Mobility of tropical tunas and the implications for fisheries management. Mar Policy 27: 87–95. [CrossRef] [Google Scholar]
  • Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJA, Pitchford JW, James A, Ahmed MZ, Brierley AS, Hindell MA, Morritt D, Musyl MK, Righton D, Shepard ELC, Wearmouth VJ, Wilson RP, Witt MJ, Metcalfe JD. 2008. Scaling laws of marine predator search behaviour. Nature 451: 1098–1103. [CrossRef] [PubMed] [Google Scholar]
  • Sun CL, Wang WR, Yeh S, Reproductive biology of yellowfin tuna in the central and western Pacific Ocean, in: WCPFC-SC1, BI WP-1, 2005. [Google Scholar]
  • Turchin P. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants, Sinauer Associates, Inc., Sunderland, MA, 1998. [Google Scholar]
  • Vera CA, Hipolito Z. The Philippines Tuna Industry: a profile. International Collective in Support of Fishworkers, 2006, 72 pp. [Google Scholar]
  • Weng KC, Stokesbury MJW, Boustany AM, Seitz AP, Teo SLH, Miller SK, Block BA. 2009. Habitat and behaviour of yellowfin tuna Thunnus albacares in the Gulf of Mexico determined using pop-up satellite archival tags. J Fish Biol 74: 1434–1449. [CrossRef] [PubMed] [Google Scholar]
  • Weng JS, Hung MK, Lai CC, Wu LJ, Lee MA, Liu KM. 2013. Fine-scale vertical and horizontal movements of juvenile yellowfin tuna (Thunnus albacares) associated with a subsurface fish aggregating device (FAD) off southwestern Taiwan. J Appl Ichthyol 29: 990–1000. [CrossRef] [Google Scholar]
  • Weng JS, Lee MA, Liu KM, Hsu MS, Hung MK, Wu LJ. 2015. Feeding ecology of juvenile yellowfin tuna Thunnus albacares from waters southwest of Taiwan inferred from stomach contents and stable isotope analyses. Mar Coast Fish 7: 537–548. [CrossRef] [Google Scholar]
  • Wells RJD, Rooker JR, Itano DG. 2012. Nursery origin of yellowfin tuna in the Hawaiian Islands. Mar Ecol Prog Ser 461: 187–196. [CrossRef] [Google Scholar]
  • Western and central pacific fisheries commission tuna fishery yearbook, 2015, 154 pp. [Google Scholar]
  • Wilson SG, Lutcavage ME, Brill RW, Genovese MP, Cooper AB, Everly AW. 2005. Movements of bluefin tuna (Thunnus thynnus) in the northwestern Atlantic Ocean recorded by pop-up satellite archival tags. Mar Biol 146: 409–423. [CrossRef] [Google Scholar]
  • Yuen HS. 1970. Behavior of skipjack tuna, Katsuwonus pelamis, as determined by tracking with ultrasonic devices. J Fish Board Can 27: 2071–2079. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.