Free Access
Aquat. Living Resour.
Volume 30, 2017
Article Number 35
Number of page(s) 8
Published online 12 September 2017
  • Al-Maghazachi SJ, Gibson R. 1984. The developmental stages of larval turbot, Scophthalmus maximus (L.). J Exp Mar Biol Ecol 82: 35–51. [CrossRef] [Google Scholar]
  • Blanda E, Hansen BW, Højgaard JK, Jepsen PM, Pedersen MF, Rayner TA, Thoisen CV, Jakobsen HH. 2016. Inorganic nitrogen addition in a semi-intensive turbot larval aquaculture system: effects on phytoplankton and zooplankton composition. Aquac Res 47: 3913–3933. [CrossRef] [Google Scholar]
  • Blaxter JHS. 1986. Development of sense organs and behaviour in teleost larvae with special reference to feeding and predation avoidance. Trans Am Fish Soc 115: 98–114. [CrossRef] [Google Scholar]
  • Brown JA. 1986. The development of feeding behaviour in the lumpfish, Cyclopterus lumpus. J Fish Biol 29: 171–178. [CrossRef] [Google Scholar]
  • Bruno E, Højgaard JK, Hansen BW, Munk P, Støttrup JG. 2017. Influence of swimming behaviour of copepod nauplii on the foraging of larval turbot (Scophthalmus maximus). Aquacult Int, submitted. [Google Scholar]
  • Buskey EJ, Coulter C, Strom S. 1993. Locomotory patterns of microzooplankton: potential effects on food selectivity of larval fish. Bull Mar Sci 53: 29–43. [Google Scholar]
  • Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT. 2010. Live feeds for early stages of fish rearing. Aquac Res 41: 613–640. [CrossRef] [Google Scholar]
  • Cunha I, Conceição LEC, Planas M. 2007. Energy allocation and metabolic scope in early turbot, Scophthalmus maximus, larvae. Mar Biol 151: 1397–1405. [CrossRef] [Google Scholar]
  • de Miguel Villegas E, Dans MJD, Paz-Andrade Castillo C, Alvarez RA. 1997. Development of the eye in the turbot Psetta maxima (Teleosti) from hatching through metamorphosis. J Morphol 233: 31–42. [CrossRef] [PubMed] [Google Scholar]
  • Dou S, Seikai T, Tsukamoto K. 2000. Feeding behaviour of Japanese flounder larvae under laboratory conditions. J Fish Biol 56: 654–666. [CrossRef] [Google Scholar]
  • Engell-Sørensen K, Støttrup JG, Holmstrup M. 2004. Rearing of flounder (Platichthys flesus) juveniles in semiextensive systems. Aquaculture 230: 475–491. [CrossRef] [Google Scholar]
  • Evjemo JO, Reitan KI, Olsen Y. 2003. Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture 227: 191–210. [CrossRef] [Google Scholar]
  • Geffen AJ, van der Veer HW, Nash RDM. 2007. The cost of metamorphosis in flatfishes. J Sea Res 58: 35–45. [CrossRef] [Google Scholar]
  • Georgalas V, Malavasi S, Franzoi P, Torricelli P. 2007. Swimming activity and feeding behaviour of larval European sea bass (Dicentrarchus labrax L.): effects of ontogeny and increasing food density. Aquaculture 264: 418–427. [CrossRef] [Google Scholar]
  • Hamre K, Holen E, Moren M. 2007. Pigmentation and eye migration in Atlantic halibut (Hippoglossus hippoglossus L.) larvae: new findings and hypotheses. Aquac Nutr 13: 65–80. [CrossRef] [Google Scholar]
  • Hunt von Herbing I, Gallager SM. 2000. Foraging behavior in early Atlantic cod larvae (Gadus morhua) feeding on a protozoan (Balanion sp.) and a copepod nauplius (Pseudodiaptomus sp.). Mar Biol 136: 591–602. [CrossRef] [Google Scholar]
  • Iglesias J, Ojea G, Otero JJ, Fuentes L, Ellis T. 2003. Comparison of mortality of wild and released reared 0-group turbot, Scophthalmus maximus, on an exposed beach (Ria de Vigo, NW Spain) and a study of the population dynamics and ecology of the natural population. Fish Manag Ecol 10: 51–59. [CrossRef] [Google Scholar]
  • Jepsen PM, Jakobsen HH, Rayner TA, Blanda E, Novac A, Engell-Sørensen K, Hansen BW. 2017. A production season of turbot larvae Scophthalmus maximus (Linnaeus 1758) reared on copepods in a Danish semi-intensive outdoor system. Aquac Res 48: 4958–4974. [CrossRef] [Google Scholar]
  • Jones A. 1972. Studies on egg development and larval rearing of turbot, Scophthalmus maximus L., and brill, Scophthalmus rhombus L., in the laboratory. J Mar Biol Assoc UK 52: 965–986. [CrossRef] [Google Scholar]
  • Kohno H. 2001. Development of swimming and feeding functions in larval turbot, Psetta maxima, reared in the laboratory. Turk J Fish Aquat Sci 1: 7–15. [Google Scholar]
  • O'Brien WJ, Browman HI, Evans BI. 1990. Search strategies of foraging animals. Am Sci 78: 152–160. [Google Scholar]
  • Munk P. 1995. Foraging behaviour of larval cod (Gadus morhua) influenced by prey density and hunger. Mar Biol 122: 205–212. [Google Scholar]
  • Øie G, Galloway T, Sørøy M, Holmvaag Hansen M, Norheim IA, Halseth CK, Almli M, Berg M, Gagnat MR, Wold PA, Attramadal K, Hagemann A, Evjemo JO, Kjørsvik E. 2017. Effect of cultivated copepods (Acartia tonsa) in first-feeding of Atlantic cod (Gadus morhua) and Ballan wrasse (Labrus bergylta) larvae. Aquac Nutr 23: 3–17. [CrossRef] [Google Scholar]
  • Osse JWM, Van den Boogaart JGM. 1997. Size of flatfish larvae at transformation, functional demands and historical constraints. J Sea Res 37: 229–239. [CrossRef] [Google Scholar]
  • Person-Le-Ruyet J. 2010. Turbot culture. In: Daniels HV, Watanabe WO, eds. Practical Flatfish Culture and Stock enhancement. Oxford: Wiley-Blackwell, pp. 125–139. [Google Scholar]
  • R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from: [Google Scholar]
  • Rabe J, Brown JA. 2001. The behavior, growth, and survival of witch flounder (Glyptocephalus cynoglossus) larvae in relation to prey availability: adaptations to an extended larval period. Fish Bull 99: 465–474. [Google Scholar]
  • Rao TR. 2003. Ecological and ethological perspectives in larval fish feeding. J Appl Aquac 13: 145–178. [CrossRef] [Google Scholar]
  • Rodríguez Villanueva JL, Fernandez Souto B. 2017. Cultured Aquatic Species Information Programme – Psetta maxima (Linnaeus 1758). [Google Scholar]
  • De La S. Sabate F, Sakakura Y, Hagiwara A. 2008. Comparison of behavioural development between Japanese flounder (Paralichthys olivaceus) and spotted halibut (Verasper variegatus) during early life stages. J Appl Ichthyol 24: 248–255. [CrossRef] [Google Scholar]
  • Schreiber AM. 2006. Asymmetric craniofacial remodeling and lateralized behavior in larval flatfish. J Exp Biol 209: 610–621. [CrossRef] [PubMed] [Google Scholar]
  • Segner H, Storch V, Reinecke M, Kloas W, Hanke W. 1994. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar Biol 119: 471–486. [CrossRef] [Google Scholar]
  • Shields R. 2001. Larviculture of marine finfish in Europe. Aquaculture 200: 55–88. [CrossRef] [Google Scholar]
  • Skiftesvik AB. 1992. Changes in behaviour at onset of exogenous feeding in marine fish larvae. Can J Fish Aquat Sci 49: 1570–1572. [CrossRef] [Google Scholar]
  • Sparrevohn CR, Støttrup JG. 2007. Post-release survival and feeding in reared turbot. J Sea Res 57: 151–161. [CrossRef] [Google Scholar]
  • Støttrup JG, Norsker NH. 1997. Production and use of copepods in marine fish larviculture. Aquaculture 155: 231–247. [CrossRef] [Google Scholar]
  • Utne-Palm AC. 2004. Effects of larvae ontogeny, turbidity, and turbulence on prey attack rate and swimming activity of Atlantic herring larvae. J Exp Mar Biol Ecol 310: 147–161. [CrossRef] [Google Scholar]
  • van der Meeren T, Karlsen Ø, Liebig PL, Mangor-Jensen A. 2014. Copepod production in a saltwater pond system: a reliable method for achievement of natural prey in start-feeding of marine fish larvae. Aquac Eng 62: 17–27. [CrossRef] [Google Scholar]
  • van der Meeren T, Olsen RE, Hamre K, Fyhn HJ. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274: 375–397. [CrossRef] [Google Scholar]
  • Wagemans F, Focant B, Vandewalle P. 1998. Early development of the cephalic skeleton in the turbot. J Fish Biol 52: 166–204. [CrossRef] [Google Scholar]
  • Wilcox JA, Tracy PL, Marcus NH. 2006. Improving live feeds effect of a mixed diet of copepod nauplii (Acartia tonsa) and rotifers on the survival and growth of first-feeding larvae of the southern flounder, Paralichthys lethostigma. J World Aquac Soc 37: 113–120. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.