Free Access
Aquat. Living Resour.
Volume 23, Number 3, July-September 2010
Page(s) 285 - 296
Published online 04 October 2010
  • Allegrucci G., Caccone A., Cataudella S., Powell J., Sbordoni V., 1995, Acclimation of the European sea bass to freshwater: monitoring genetic changes by RAPD polymerase chain reaction to detect DNA polymorphisms. Mar. Biol. 121, 591–599. [CrossRef]
  • Allegrucci G., Fortunato C., Cataudella S., Sbordoni V., 1994, Acclimation to fresh water of the sea bass: evidence of selective motality and allozyme genotypes. In: Beaumont A.R. (ed.) Genetics and evolution of marine organisms, London, Chapman and Hall, pp. 486–502.
  • Allegrucci G., Fortunato C., Sbordoni V., 1997, Genetic structure and allozyme variation of seabass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Mar. Biol. 128, 347–358. [CrossRef]
  • Almuly R., Cavari B., Ferstman H., Kolodny O., Funkenstein B., 2000, Genomic structure and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: identification of minisatellite polymorphism in intron I. Genome 43, 836–845. [CrossRef] [PubMed]
  • Almuly R., Poleg-Danin Y., Gorshkov S., Gorshkova G., Rapoport B., Soller M., Kashi Y., Funkenstein B., 2005, Characterization of the 5′flanking region of the growth hormone gene of the marine teleost, gilthead sea bream Sparus aurata: analysis of a polymorphic microsatellite in the proximal promoter. Fish. Sci. 71, 479–490. [CrossRef]
  • Almuly R., Skopal T., Funkenstein B., 2008, Regulatory regions in the promoter and first intron of Sparus aurata growth hormone gene: repression of gene activity by a polymorphic minisatellite. Comp. Biochem. Physiol. D3, 43–50.
  • Bahri-Sfar L., Lemaire C., Ben Hassine O.K., Bonhomme F., 2000, Fragmentation of seabass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. B Biol. Sci. 267, 929–935. [CrossRef]
  • Barnett K.R., Hopkins II R.L., Peyton D.K. 2007, A minisatellite in the growth hormone gene of Esocidae is derived from a single copy element in the salmonid genome. Copeia 2007, 205–211.
  • Benson G., 1999, Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 27, 573–580. [CrossRef] [PubMed]
  • Blel H., Panfili J., Guinand B., Berrebi P., Said K., Durand J.-D., 2010, Selection footprint at the first intron of the Prl gene in natural populations of the flathead mullet (Mugil cephalus, L. 1758). J. Exp. Mar. Biol. Ecol. 387, 60–67. [CrossRef]
  • Bonhomme F., Naciri M., Bahri-Sfar L., Lemaire C. 2002, Analyse comparée de la structure génétique de deux espèces de poissons marins apparentées et sympatriques Dicentrarchus labrax et Dicentrarchus punctatus. C. R. Biol. 325, 213–220. [CrossRef] [PubMed]
  • Bouck A., Vision T., 2007, The molecular ecologist’s guide to expressed sequence tags. Mol. Ecol. 16, 907–924. [CrossRef] [PubMed]
  • Chaoui L., Kara M.H., Quignard J.P., Faure E., Bonhomme F., 2009, Forte différenciation génétique de la daurade Sparus aurata (L., 1758) entre les deux rives de la Méditerranée occidentale. C. R. Biol. 332, 329–335. [CrossRef] [PubMed]
  • Chatain B., Chavanne H., 2009, La génétique du bar (Dicentrarchus labrax, L.). Cah. Agric. 18: 249–255.
  • Chervinski J., 1974, Sea Bass, Dicentrarchus labrax L. (Pisces, Serranidae), a “police fish” in fresh water ponds and its adaptability to various saline conditions. Bamidgeh 2, 110–113.
  • Chistiakov D.A., Hellemans B., Haley C.S., Law A.S.,Tsigenopoulos C.S., Kotoulas G., Bertotto D., Libertini A., Volckaert F.A.M., 2005, A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170, 1821–1826. [CrossRef] [PubMed]
  • Chistiakov D.,Tsigenopoulos C., Lagnel J., Guo Y., Hellemans B., Haley C., Volckaert F.A.M.,Kotoulas G., 2008, A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Anim. Genet. 39, 623–634. [CrossRef] [PubMed]
  • Company R.,Calduch-Giner J.A., Mingarro M.,Pérez-Sánchez J., 2000, CDNA cloning and sequence of European sea bass (Dicentrarchus labrax) somatolactin. Comp. Biochem. Physiol. B127, 183–192.
  • Cossins A.R., Crawford D.L., 2005, Fish as models for environmental genomics. Nat. Rev. Genet. 6, 324–340. [CrossRef] [PubMed]
  • Dalziel A.C., Rogers S.M., Schulte P.M., 2009, Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol. Ecol. 18, 4997–5017. [CrossRef] [PubMed]
  • Deane E.E., Woo N.Y.S., 2009, Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: a review. Rev. Fish. Biol. Fish. 19, 97–120. [CrossRef]
  • De-Santis C., Jerry D.R., 2007, Candidate growth genes in finfish - where should we be looking? Aquaculture 272, 22–38. [CrossRef]
  • DiMichele L., Powers D.A., 1982, Physiological-basis for swimming endurance differences between Ldh-B genotypes of Fundulus heteroclitus. Science 216, 1014–1016. [CrossRef] [PubMed]
  • Dufour V., Cantou M., Lecomte F., 2009, Identification of sea bass (Dicentrarchus labrax) nursery areas in the north-western Mediterranean Sea. J. Mar. Biol. Assoc. UK 89, 1367–1374. [CrossRef]
  • Feder M.E.,Mitchell-Olds T., 2003, Evolutionary and ecological functional genomics. Nat. Rev. Genet. 4, 649–655. [CrossRef] [PubMed]
  • Fritsch M., Morizur Y., Lambert E., Bonhomme F., Guinand B., 2007, Assessment of sea bass (Dicentrarchus labrax, L.) stock delimitation in the Bay of Biscay and the English Channel based on mark-recapture and genetic data. Fish. Res. 83, 123–132. [CrossRef]
  • Fromme T., Hoffmann C., Nau K., Rozman J., Reichwald K., Utting M., Platzer M., Klingenspor M., 2009, An intronic single base exchange leads to a brown adipose tissue-specific loss of Ucp3 expression and an altered body mass trajectory. Physiol. Genomics 38, 54–62. [CrossRef] [PubMed]
  • Giffard-Mena I., Lorin-Nebel C., Charmantier G., Castille R., Boulo V., 2008, Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: role of aquaporins and Na+/K+-ATPases. Comp. Biochem. Physiol. A150, 332–338.
  • Hall T.A., 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98.
  • Hancock J.M., 1999, Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: D.B. Goldstein, Schlötterer C. (Eds). Micosatelittes: evolution and applications, Oxford, Oxford University Press, pp. 1–9.
  • Huising M.O., Kruiswijk M., Flik G., 2006, Phylogeny and evolution of class-I helical cytokines. J. Endocrinol. 189, 1–25. [CrossRef] [PubMed]
  • Jensen K., Madsen S.S.,Kristiansen K., 1998, Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282, 290–300. [CrossRef] [PubMed]
  • Kashi Y., Soller M., 1999, Functional roles of microsatellites and minisatellites. In: Micosatelittes: evolution and applications. In: D.B. Goldstein, Schlötterer C. (Eds). Micosatelittes: evolution and applications, Oxford, Oxford University Press, pp. 10–23.
  • Kelley D.F., 1988, The importance of estuaries for sea-bass, Dicentrarchus labrax (L.). J. Fish Biol. 33, 25–33. [CrossRef]
  • Koehn R.K., Bayne B.L., Moore M.N.,Siebenaller J.F., 1980, Salinity related physiological and genetic differences between populations of Mytilus edulis. Biol. J. Linn. Soc. 14, 319–334. [CrossRef]
  • Kuhl H., Beck A., Wozniak G., Canario A., Volckaert F., Reinhardt R., 2010a, The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing. BMC Genomics 11, 68. [CrossRef]
  • Kuhl H., Tine M., Hecht J., Knaust F., Reinhardt R., 2010b, Analysis of single nucleotide polymorphisms in three chromosomes of European sea bass Dicentrarchus labrax. Comp. Biochem. Physiol. D [doi: 10.1016/j.cbd.2010.04.003]
  • Laiz-Carrión R., Fuentes J., Redruello B., Guzmán J.M., Martín del Río M.P., Power D., Mancera J.M., 2009, Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen. Comp. Endocrinol. 162, 293–300. [CrossRef] [PubMed]
  • Lemaire C., Allegrucci G., Naciri M., Bahri-Sfar L., Kara H., Bonhomme F., 2000, Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol. Ecol. 9, 457–467.
  • Lemaire C., Versini J.J., Bonhomme F., 2005, Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasic markers. J. Evol. Biol. 18, 70–80. [CrossRef] [PubMed]
  • Li X., Bai J., Ye X., Hu Y., Li S., Yu L., 2009, Polymorphisms in the 5′flanking region of the insulin-like growth factor I gene are associated with growth traits in largemouth bass Micropterus salmoides. Fish. Sci. 75, 351-358. [CrossRef] [MathSciNet]
  • Li Y., Korol A., Fahima T., Nevo E., 2004, Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007. [CrossRef] [PubMed]
  • Mancera J.M., McCormick S.D., 1998a, Osmoregulatory actions of the GH/IGF axis in nonsalmonid teleosts. Comp. Biochem. Physiol. B 121, 43–48. [CrossRef]
  • Mancera J.M., McCormick S.D., 1998b, Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen. Comp. Endocrinol. 11, 103–112. [CrossRef]
  • Mancera J.M., McCormick S.D., 2007, Role of prolactin, growth hormone, insuline-like growth factor and cortisol in teleost osmoregulation. In: Baldisserotto B., Mancera J.M., Kapoor B.G. (Eds.) Fish osmoregulation, Enfield, Science Publishers Inc., pp. 497–515.
  • Marino G., Cataldi E., Pucci P., Bronzi P., Cataudella S. 1994, Acclimation trials of wild and hatchery sea bass (Dicentrarchus labrax) fry at different salinities. J. Appl. Ichthyol. 10, 57–63. [CrossRef]
  • Moen T., Hayes B., Nilsen F., Delghandi M., Fjalestad K.T., Fevolden S.-E., Berg P.R., Lien S., 2008, Identification and characterisation of novel SNP markers in Atlantic cod: evidence for directional selection. BMC Genomics 9, 18. [CrossRef] [PubMed]
  • Naciri M., Lemaire C., Borsa P., Bonhomme F., 1999, Genetic study of the Atlantic/Mediterranean transition in seabass (Dicentrarchus labrax). J. Hered. 90, 591–596. [CrossRef]
  • Nebel C., Romestand B., Nègre-Sadargues G., Grousset E., Aujoulat F., Bacal J., Bonhomme F., Charmantier G., 2005, Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: involvement of gills and urinary system. J. Exp. Biol. 208, 3859–3871. [CrossRef] [PubMed]
  • Nei M., 1987, Molecular evolutionary genetics, New York, Columbia University Press.
  • Nielsen E.E.,Hemmer-Hansen J., Larsen P.F., Bekkevold D., 2009a, Population genomics of marine fishes: identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150. [CrossRef]
  • Nielsen E.E., Hemmer-Hanssen J., Poulsen N.A., Loeschke V., Moen T., Johansen T., Mittelholzer T., Taranger G.L., Ogden R., Carvalho G.R., 2009b, Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol. Biol. 9, 276. [CrossRef]
  • Patarnello T., Volckaert F.A.M.J., Castilho, R., 2007, Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Mol. Ecol. 16, 4426–4444. [CrossRef] [PubMed]
  • Pickett G.D., Pawson M.G. 1994, Sea bass biology, exploitation and conservation. Chapman and Hall, London, Fish and Fisheries Series.
  • Pradet-Balade B., Salmon C., Hardy A., Querat B., 1998, Heterogeneity of eel thyrotropin β mRNAs is due to a minisatellite in the 3′untranslated region of the gene. Gene 215, 251–257. [CrossRef] [PubMed]
  • Poulter R., Butler M., Ormandy J., 1999, A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons. Gene 227, 169–179. [CrossRef] [PubMed]
  • Reinecke M., 2010, Influences of the environment on the endocrine and paracrine fish growth hormone–insulin-like growth factor-I system. J. Fish Biol. 76, 1233–1254. [CrossRef] [PubMed]
  • Rise M.L., Hall J.R., Rise M., Hori T.S., Browne M.J., Gamperl A.K., Hubert S., Kimball J., Bowman S., Johnson S.C., 2010, Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua). Physiol. Genomics, 42, 266–280. [CrossRef] [PubMed]
  • Ryynänen H., Primmer C., 2004, Distribution of genetic variation in the growth hormone 1 gene in Atlantic salmon (Salmo salar) populations from Europe and North America. Mol. Ecol. 13, 3857–3869. [CrossRef] [PubMed]
  • Sakamoto T., Hirano T., 1993, Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc. Natl. Acad. Sci. USA 90, 1912–1916. [CrossRef]
  • Sakamoto T., McCormick S.D., 2006, Prolactin and growth hormone in fish osmoregulation. Gen. Comp. Endocrinol. 147, 24–30. [CrossRef] [PubMed]
  • Schulte P.M., Glémet H.C., Fiebig A.A., Powers D.A., 2000, Adaptive variation in lactate dehydrogenase-B gene expression: Role of a stress-responsive regulatory element. Proc. Natl. Acad. Sci. USA 97, 6597–6602. [CrossRef]
  • Smith W.L., Craig M.T., 2007, Casting the Percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of Serranid and Percid fishes. Copeia 2007, 35–55. [CrossRef]
  • Streelman J., Kocher T., 2002, Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol. Genomics 9, 1–4. [PubMed]
  • Taniyama, S., Kitahashi, T., Ando, H., Ban M., Ueda, H., Urano, A., 1999, Changes in the levels of mRNAs for growth hormone/prolactin/somatolactin family and Pit-1/GHF-1 in the pituitaries of pre-spawning chum salmon. J. Mol. Endocrinol. 23, 189–198. [CrossRef] [PubMed]
  • Tao W.J., Boulding E.G., 2003, Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity 91, 60–69. [CrossRef] [PubMed]
  • Terova G., Rimoldi S., Chini V., Gornati R., Bernardini G., Saroglia M., 2007, Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax L.) during long-term fasting and refeeding. J. Fish Biol. 70, 219–233. [CrossRef]
  • Uchida K., Moriyama S., Breves J.P., Fox B.K., Pierce A.L., Borski R.J., Hirano T., Grau E.G., 2009, cDNA cloning and isolation of somatolactin in Mozambique tilapia and effects of seawater acclimation, confinement stress, and fasting on its pituitary expression. Gen. Comp. Endocrinol. 161, 162–170. [CrossRef] [PubMed]
  • Vargas-Chacoff L., Astola A., Arjona F.J., Martín del Río M.P.,García-Cózar F., Mancera J.M.,Martínez-Rodríguez G., 2009, Pituitary gene and protein expression under experimental variation on salinity and temperature in gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. B154, 303–308.
  • Varsamos S., Diaz J.-P., Charmantier G., Flik G., Blasco C., Connes, R., 2002, Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J. Exp. Zool. 293, 12–26. [CrossRef] [PubMed]
  • Varsamos S., Xuereb B., Commes T., Flik G.,Spanings-Pierrot C., 2006, Pituitary hormone mRNA expression in European sea bass Dicentrarchus labrax in seawater and following acclimation to fresh water. J. Endocrinol. 191, 473–480. [CrossRef] [PubMed]
  • Vasemägi A., Nilsson J., Primmer C.R., 2005, Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol. Biol. Evol. 22, 1067–1076. [CrossRef] [PubMed]
  • Volckaert F.A.M., Batargias C., Canario A., Chatziplis D., Chistiakhov D., Haley C., Libertini A., Tsigenopoulos C., 2008, European sea bass. In: Kocher T.D., Cole C. (Eds.) Genome mapping and genomics in animals. Vol. 2: Genome mapping and genomics in fishes and aquatic animal. Berlin, Springer-Verlag, pp. 117–133.
  • Von Schalburg K., Yazawa R., de Boer J., Lubieniecki K., Goh B., Straub C., Beetz-Sargent M.R., Robb A., Davidson W.S., Devlin R.H., Koop B.F., 2008, Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics 9, 522. [CrossRef] [PubMed]
  • Weir B.S., 1979, Inferences about linkage disequilibrium. Biometrics 35, 235–254. [CrossRef] [PubMed]
  • Weir B.S., Cockerham C.C., 1984, Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. [CrossRef] [PubMed]
  • Wray G., 2007, The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216. [CrossRef] [PubMed]
  • Zhang D., Shao Y., Jiang S., Li J., Xu X., 2009, Nibea coibor growth hormone gene: its phylogenetic significance, microsatellite variation and expression analysis. Gen. Comp. Endocrinol. 163, 233–241. [CrossRef] [PubMed]
  • Zheng C., Ovaskainen O., Hanski I., 2009, Modelling single nucleotide effects in phosphoglucose isomerase on dispersal in the Glanville fritillary butterfly: coupling of ecological and evolutionary dynamics. Phil. Trans. R. Soc. B364, 1519–1532.
  • Zhu Y., Thomas P., 1998, Effects of light on plasma somatolactin levels in red drum (Sciaenops ocellatus). Gen. Comp. Endocrinol. 111, 76–82. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.