Free Access
Issue
Aquat. Living Resour.
Volume 23, Number 3, July-September 2010
Page(s) 285 - 296
DOI https://doi.org/10.1051/alr/2010021
Published online 04 October 2010
  • Allegrucci G., Caccone A., Cataudella S., Powell J., Sbordoni V., 1995, Acclimation of the European sea bass to freshwater: monitoring genetic changes by RAPD polymerase chain reaction to detect DNA polymorphisms. Mar. Biol. 121, 591–599. [CrossRef] [Google Scholar]
  • Allegrucci G., Fortunato C., Cataudella S., Sbordoni V., 1994, Acclimation to fresh water of the sea bass: evidence of selective motality and allozyme genotypes. In: Beaumont A.R. (ed.) Genetics and evolution of marine organisms, London, Chapman and Hall, pp. 486–502. [Google Scholar]
  • Allegrucci G., Fortunato C., Sbordoni V., 1997, Genetic structure and allozyme variation of seabass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Mar. Biol. 128, 347–358. [CrossRef] [Google Scholar]
  • Almuly R., Cavari B., Ferstman H., Kolodny O., Funkenstein B., 2000, Genomic structure and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: identification of minisatellite polymorphism in intron I. Genome 43, 836–845. [CrossRef] [PubMed] [Google Scholar]
  • Almuly R., Poleg-Danin Y., Gorshkov S., Gorshkova G., Rapoport B., Soller M., Kashi Y., Funkenstein B., 2005, Characterization of the 5′flanking region of the growth hormone gene of the marine teleost, gilthead sea bream Sparus aurata: analysis of a polymorphic microsatellite in the proximal promoter. Fish. Sci. 71, 479–490. [CrossRef] [Google Scholar]
  • Almuly R., Skopal T., Funkenstein B., 2008, Regulatory regions in the promoter and first intron of Sparus aurata growth hormone gene: repression of gene activity by a polymorphic minisatellite. Comp. Biochem. Physiol. D3, 43–50. [Google Scholar]
  • Bahri-Sfar L., Lemaire C., Ben Hassine O.K., Bonhomme F., 2000, Fragmentation of seabass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. B Biol. Sci. 267, 929–935. [CrossRef] [Google Scholar]
  • Barnett K.R., Hopkins II R.L., Peyton D.K. 2007, A minisatellite in the growth hormone gene of Esocidae is derived from a single copy element in the salmonid genome. Copeia 2007, 205–211. [Google Scholar]
  • Benson G., 1999, Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 27, 573–580. [CrossRef] [PubMed] [Google Scholar]
  • Blel H., Panfili J., Guinand B., Berrebi P., Said K., Durand J.-D., 2010, Selection footprint at the first intron of the Prl gene in natural populations of the flathead mullet (Mugil cephalus, L. 1758). J. Exp. Mar. Biol. Ecol. 387, 60–67. [CrossRef] [Google Scholar]
  • Bonhomme F., Naciri M., Bahri-Sfar L., Lemaire C. 2002, Analyse comparée de la structure génétique de deux espèces de poissons marins apparentées et sympatriques Dicentrarchus labrax et Dicentrarchus punctatus. C. R. Biol. 325, 213–220. [CrossRef] [PubMed] [Google Scholar]
  • Bouck A., Vision T., 2007, The molecular ecologist’s guide to expressed sequence tags. Mol. Ecol. 16, 907–924. [CrossRef] [PubMed] [Google Scholar]
  • Chaoui L., Kara M.H., Quignard J.P., Faure E., Bonhomme F., 2009, Forte différenciation génétique de la daurade Sparus aurata (L., 1758) entre les deux rives de la Méditerranée occidentale. C. R. Biol. 332, 329–335. [CrossRef] [PubMed] [Google Scholar]
  • Chatain B., Chavanne H., 2009, La génétique du bar (Dicentrarchus labrax, L.). Cah. Agric. 18: 249–255. [Google Scholar]
  • Chervinski J., 1974, Sea Bass, Dicentrarchus labrax L. (Pisces, Serranidae), a “police fish” in fresh water ponds and its adaptability to various saline conditions. Bamidgeh 2, 110–113. [Google Scholar]
  • Chistiakov D.A., Hellemans B., Haley C.S., Law A.S.,Tsigenopoulos C.S., Kotoulas G., Bertotto D., Libertini A., Volckaert F.A.M., 2005, A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170, 1821–1826. [CrossRef] [PubMed] [Google Scholar]
  • Chistiakov D.,Tsigenopoulos C., Lagnel J., Guo Y., Hellemans B., Haley C., Volckaert F.A.M.,Kotoulas G., 2008, A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Anim. Genet. 39, 623–634. [CrossRef] [PubMed] [Google Scholar]
  • Company R.,Calduch-Giner J.A., Mingarro M.,Pérez-Sánchez J., 2000, CDNA cloning and sequence of European sea bass (Dicentrarchus labrax) somatolactin. Comp. Biochem. Physiol. B127, 183–192. [Google Scholar]
  • Cossins A.R., Crawford D.L., 2005, Fish as models for environmental genomics. Nat. Rev. Genet. 6, 324–340. [CrossRef] [PubMed] [Google Scholar]
  • Dalziel A.C., Rogers S.M., Schulte P.M., 2009, Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol. Ecol. 18, 4997–5017. [CrossRef] [PubMed] [Google Scholar]
  • Deane E.E., Woo N.Y.S., 2009, Modulation of fish growth hormone levels by salinity, temperature, pollutants and aquaculture related stress: a review. Rev. Fish. Biol. Fish. 19, 97–120. [CrossRef] [Google Scholar]
  • De-Santis C., Jerry D.R., 2007, Candidate growth genes in finfish - where should we be looking? Aquaculture 272, 22–38. [CrossRef] [Google Scholar]
  • DiMichele L., Powers D.A., 1982, Physiological-basis for swimming endurance differences between Ldh-B genotypes of Fundulus heteroclitus. Science 216, 1014–1016. [CrossRef] [PubMed] [Google Scholar]
  • Dufour V., Cantou M., Lecomte F., 2009, Identification of sea bass (Dicentrarchus labrax) nursery areas in the north-western Mediterranean Sea. J. Mar. Biol. Assoc. UK 89, 1367–1374. [CrossRef] [Google Scholar]
  • Feder M.E.,Mitchell-Olds T., 2003, Evolutionary and ecological functional genomics. Nat. Rev. Genet. 4, 649–655. [CrossRef] [PubMed] [Google Scholar]
  • Fritsch M., Morizur Y., Lambert E., Bonhomme F., Guinand B., 2007, Assessment of sea bass (Dicentrarchus labrax, L.) stock delimitation in the Bay of Biscay and the English Channel based on mark-recapture and genetic data. Fish. Res. 83, 123–132. [CrossRef] [Google Scholar]
  • Fromme T., Hoffmann C., Nau K., Rozman J., Reichwald K., Utting M., Platzer M., Klingenspor M., 2009, An intronic single base exchange leads to a brown adipose tissue-specific loss of Ucp3 expression and an altered body mass trajectory. Physiol. Genomics 38, 54–62. [CrossRef] [PubMed] [Google Scholar]
  • Giffard-Mena I., Lorin-Nebel C., Charmantier G., Castille R., Boulo V., 2008, Adaptation of the sea-bass (Dicentrarchus labrax) to fresh water: role of aquaporins and Na+/K+-ATPases. Comp. Biochem. Physiol. A150, 332–338. [Google Scholar]
  • Hall T.A., 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98. [Google Scholar]
  • Hancock J.M., 1999, Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: D.B. Goldstein, Schlötterer C. (Eds). Micosatelittes: evolution and applications, Oxford, Oxford University Press, pp. 1–9. [Google Scholar]
  • Huising M.O., Kruiswijk M., Flik G., 2006, Phylogeny and evolution of class-I helical cytokines. J. Endocrinol. 189, 1–25. [CrossRef] [PubMed] [Google Scholar]
  • Jensen K., Madsen S.S.,Kristiansen K., 1998, Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282, 290–300. [CrossRef] [PubMed] [Google Scholar]
  • Kashi Y., Soller M., 1999, Functional roles of microsatellites and minisatellites. In: Micosatelittes: evolution and applications. In: D.B. Goldstein, Schlötterer C. (Eds). Micosatelittes: evolution and applications, Oxford, Oxford University Press, pp. 10–23. [Google Scholar]
  • Kelley D.F., 1988, The importance of estuaries for sea-bass, Dicentrarchus labrax (L.). J. Fish Biol. 33, 25–33. [CrossRef] [Google Scholar]
  • Koehn R.K., Bayne B.L., Moore M.N.,Siebenaller J.F., 1980, Salinity related physiological and genetic differences between populations of Mytilus edulis. Biol. J. Linn. Soc. 14, 319–334. [CrossRef] [Google Scholar]
  • Kuhl H., Beck A., Wozniak G., Canario A., Volckaert F., Reinhardt R., 2010a, The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing. BMC Genomics 11, 68. [CrossRef] [Google Scholar]
  • Kuhl H., Tine M., Hecht J., Knaust F., Reinhardt R., 2010b, Analysis of single nucleotide polymorphisms in three chromosomes of European sea bass Dicentrarchus labrax. Comp. Biochem. Physiol. D [doi: 10.1016/j.cbd.2010.04.003] [Google Scholar]
  • Laiz-Carrión R., Fuentes J., Redruello B., Guzmán J.M., Martín del Río M.P., Power D., Mancera J.M., 2009, Expression of pituitary prolactin, growth hormone and somatolactin is modified in response to different stressors (salinity, crowding and food-deprivation) in gilthead sea bream Sparus auratus. Gen. Comp. Endocrinol. 162, 293–300. [CrossRef] [PubMed] [Google Scholar]
  • Lemaire C., Allegrucci G., Naciri M., Bahri-Sfar L., Kara H., Bonhomme F., 2000, Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol. Ecol. 9, 457–467. [Google Scholar]
  • Lemaire C., Versini J.J., Bonhomme F., 2005, Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasic markers. J. Evol. Biol. 18, 70–80. [CrossRef] [PubMed] [Google Scholar]
  • Li X., Bai J., Ye X., Hu Y., Li S., Yu L., 2009, Polymorphisms in the 5′flanking region of the insulin-like growth factor I gene are associated with growth traits in largemouth bass Micropterus salmoides. Fish. Sci. 75, 351-358. [CrossRef] [MathSciNet] [Google Scholar]
  • Li Y., Korol A., Fahima T., Nevo E., 2004, Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007. [CrossRef] [PubMed] [Google Scholar]
  • Mancera J.M., McCormick S.D., 1998a, Osmoregulatory actions of the GH/IGF axis in nonsalmonid teleosts. Comp. Biochem. Physiol. B 121, 43–48. [CrossRef] [Google Scholar]
  • Mancera J.M., McCormick S.D., 1998b, Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen. Comp. Endocrinol. 11, 103–112. [CrossRef] [Google Scholar]
  • Mancera J.M., McCormick S.D., 2007, Role of prolactin, growth hormone, insuline-like growth factor and cortisol in teleost osmoregulation. In: Baldisserotto B., Mancera J.M., Kapoor B.G. (Eds.) Fish osmoregulation, Enfield, Science Publishers Inc., pp. 497–515. [Google Scholar]
  • Marino G., Cataldi E., Pucci P., Bronzi P., Cataudella S. 1994, Acclimation trials of wild and hatchery sea bass (Dicentrarchus labrax) fry at different salinities. J. Appl. Ichthyol. 10, 57–63. [CrossRef] [Google Scholar]
  • Moen T., Hayes B., Nilsen F., Delghandi M., Fjalestad K.T., Fevolden S.-E., Berg P.R., Lien S., 2008, Identification and characterisation of novel SNP markers in Atlantic cod: evidence for directional selection. BMC Genomics 9, 18. [CrossRef] [PubMed] [Google Scholar]
  • Naciri M., Lemaire C., Borsa P., Bonhomme F., 1999, Genetic study of the Atlantic/Mediterranean transition in seabass (Dicentrarchus labrax). J. Hered. 90, 591–596. [CrossRef] [Google Scholar]
  • Nebel C., Romestand B., Nègre-Sadargues G., Grousset E., Aujoulat F., Bacal J., Bonhomme F., Charmantier G., 2005, Differential freshwater adaptation in juvenile sea-bass Dicentrarchus labrax: involvement of gills and urinary system. J. Exp. Biol. 208, 3859–3871. [CrossRef] [PubMed] [Google Scholar]
  • Nei M., 1987, Molecular evolutionary genetics, New York, Columbia University Press. [Google Scholar]
  • Nielsen E.E.,Hemmer-Hansen J., Larsen P.F., Bekkevold D., 2009a, Population genomics of marine fishes: identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150. [CrossRef] [Google Scholar]
  • Nielsen E.E., Hemmer-Hanssen J., Poulsen N.A., Loeschke V., Moen T., Johansen T., Mittelholzer T., Taranger G.L., Ogden R., Carvalho G.R., 2009b, Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol. Biol. 9, 276. [CrossRef] [Google Scholar]
  • Patarnello T., Volckaert F.A.M.J., Castilho, R., 2007, Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Mol. Ecol. 16, 4426–4444. [CrossRef] [PubMed] [Google Scholar]
  • Pickett G.D., Pawson M.G. 1994, Sea bass biology, exploitation and conservation. Chapman and Hall, London, Fish and Fisheries Series. [Google Scholar]
  • Pradet-Balade B., Salmon C., Hardy A., Querat B., 1998, Heterogeneity of eel thyrotropin β mRNAs is due to a minisatellite in the 3′untranslated region of the gene. Gene 215, 251–257. [CrossRef] [PubMed] [Google Scholar]
  • Poulter R., Butler M., Ormandy J., 1999, A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons. Gene 227, 169–179. [CrossRef] [PubMed] [Google Scholar]
  • Reinecke M., 2010, Influences of the environment on the endocrine and paracrine fish growth hormone–insulin-like growth factor-I system. J. Fish Biol. 76, 1233–1254. [CrossRef] [PubMed] [Google Scholar]
  • Rise M.L., Hall J.R., Rise M., Hori T.S., Browne M.J., Gamperl A.K., Hubert S., Kimball J., Bowman S., Johnson S.C., 2010, Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua). Physiol. Genomics, 42, 266–280. [CrossRef] [PubMed] [Google Scholar]
  • Ryynänen H., Primmer C., 2004, Distribution of genetic variation in the growth hormone 1 gene in Atlantic salmon (Salmo salar) populations from Europe and North America. Mol. Ecol. 13, 3857–3869. [CrossRef] [PubMed] [Google Scholar]
  • Sakamoto T., Hirano T., 1993, Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc. Natl. Acad. Sci. USA 90, 1912–1916. [CrossRef] [Google Scholar]
  • Sakamoto T., McCormick S.D., 2006, Prolactin and growth hormone in fish osmoregulation. Gen. Comp. Endocrinol. 147, 24–30. [CrossRef] [PubMed] [Google Scholar]
  • Schulte P.M., Glémet H.C., Fiebig A.A., Powers D.A., 2000, Adaptive variation in lactate dehydrogenase-B gene expression: Role of a stress-responsive regulatory element. Proc. Natl. Acad. Sci. USA 97, 6597–6602. [CrossRef] [Google Scholar]
  • Smith W.L., Craig M.T., 2007, Casting the Percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of Serranid and Percid fishes. Copeia 2007, 35–55. [CrossRef] [Google Scholar]
  • Streelman J., Kocher T., 2002, Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol. Genomics 9, 1–4. [PubMed] [Google Scholar]
  • Taniyama, S., Kitahashi, T., Ando, H., Ban M., Ueda, H., Urano, A., 1999, Changes in the levels of mRNAs for growth hormone/prolactin/somatolactin family and Pit-1/GHF-1 in the pituitaries of pre-spawning chum salmon. J. Mol. Endocrinol. 23, 189–198. [CrossRef] [PubMed] [Google Scholar]
  • Tao W.J., Boulding E.G., 2003, Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity 91, 60–69. [CrossRef] [PubMed] [Google Scholar]
  • Terova G., Rimoldi S., Chini V., Gornati R., Bernardini G., Saroglia M., 2007, Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax L.) during long-term fasting and refeeding. J. Fish Biol. 70, 219–233. [CrossRef] [Google Scholar]
  • Uchida K., Moriyama S., Breves J.P., Fox B.K., Pierce A.L., Borski R.J., Hirano T., Grau E.G., 2009, cDNA cloning and isolation of somatolactin in Mozambique tilapia and effects of seawater acclimation, confinement stress, and fasting on its pituitary expression. Gen. Comp. Endocrinol. 161, 162–170. [CrossRef] [PubMed] [Google Scholar]
  • Vargas-Chacoff L., Astola A., Arjona F.J., Martín del Río M.P.,García-Cózar F., Mancera J.M.,Martínez-Rodríguez G., 2009, Pituitary gene and protein expression under experimental variation on salinity and temperature in gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. B154, 303–308. [Google Scholar]
  • Varsamos S., Diaz J.-P., Charmantier G., Flik G., Blasco C., Connes, R., 2002, Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J. Exp. Zool. 293, 12–26. [CrossRef] [PubMed] [Google Scholar]
  • Varsamos S., Xuereb B., Commes T., Flik G.,Spanings-Pierrot C., 2006, Pituitary hormone mRNA expression in European sea bass Dicentrarchus labrax in seawater and following acclimation to fresh water. J. Endocrinol. 191, 473–480. [CrossRef] [PubMed] [Google Scholar]
  • Vasemägi A., Nilsson J., Primmer C.R., 2005, Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol. Biol. Evol. 22, 1067–1076. [CrossRef] [PubMed] [Google Scholar]
  • Volckaert F.A.M., Batargias C., Canario A., Chatziplis D., Chistiakhov D., Haley C., Libertini A., Tsigenopoulos C., 2008, European sea bass. In: Kocher T.D., Cole C. (Eds.) Genome mapping and genomics in animals. Vol. 2: Genome mapping and genomics in fishes and aquatic animal. Berlin, Springer-Verlag, pp. 117–133. [Google Scholar]
  • Von Schalburg K., Yazawa R., de Boer J., Lubieniecki K., Goh B., Straub C., Beetz-Sargent M.R., Robb A., Davidson W.S., Devlin R.H., Koop B.F., 2008, Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics 9, 522. [CrossRef] [PubMed] [Google Scholar]
  • Weir B.S., 1979, Inferences about linkage disequilibrium. Biometrics 35, 235–254. [CrossRef] [PubMed] [Google Scholar]
  • Weir B.S., Cockerham C.C., 1984, Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. [CrossRef] [PubMed] [Google Scholar]
  • Wray G., 2007, The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216. [CrossRef] [PubMed] [Google Scholar]
  • Zhang D., Shao Y., Jiang S., Li J., Xu X., 2009, Nibea coibor growth hormone gene: its phylogenetic significance, microsatellite variation and expression analysis. Gen. Comp. Endocrinol. 163, 233–241. [CrossRef] [PubMed] [Google Scholar]
  • Zheng C., Ovaskainen O., Hanski I., 2009, Modelling single nucleotide effects in phosphoglucose isomerase on dispersal in the Glanville fritillary butterfly: coupling of ecological and evolutionary dynamics. Phil. Trans. R. Soc. B364, 1519–1532. [Google Scholar]
  • Zhu Y., Thomas P., 1998, Effects of light on plasma somatolactin levels in red drum (Sciaenops ocellatus). Gen. Comp. Endocrinol. 111, 76–82. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.