Free Access
Aquat. Living Resour.
Volume 23, Number 2, April-June 2010
Page(s) 167 - 176
Published online 29 April 2010
  • Bérubé M., 1989, Partage des ressources entre le crabe tourteau, Cancer irroratus, et le crabe araignée, Hyas araneus, au nord du golfe du Saint-Laurent. M.Sc. Thesis. Université Laval, Canada. Département de biologie. [Google Scholar]
  • Caut S., Angulo E., Courchamp F., 2009, Variation in discrimination factors (15N and 13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443–453. [CrossRef] [Google Scholar]
  • Deudero S., Pinnegar J.K., Polunin N.V.C., Morey G., Morales-Nin B., 2004, Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar. Biol. 145, 971–981. [CrossRef] [Google Scholar]
  • Diehl S., 1993, Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships. Oikos 68, 151–157. [CrossRef] [Google Scholar]
  • Drolet D., Himmelman J.H., Rochette R., 2004, Use of refuges by the ophiuroid Ophiopholis aculeata: contrasting effects of substratum complexity on predation risk from two predators. Mar. Ecol. Prog. Ser. 284, 173–183. [CrossRef] [Google Scholar]
  • Dunton K.H., 2001, δ15N and δ13C measurements of Antarctic peninsula fauna: Trophic relationships and assimilation of benthic seaweeds. Am. Zool. 41, 99–112. [CrossRef] [Google Scholar]
  • Dutil C., Gaymer C.F., Himmelman J.H., 2004, Prey selection and predatory impact of four major sea stars on a soft bottom subtidal community. J. Exp. Mar. Biol. Ecol. 313, 353–374. [CrossRef] [Google Scholar]
  • Emmerson M., Yearsley J.M., 2004, Weak interactions, omnivory and emergent food-web properties. Proc. R. Soc. Lond. B Biol. Sci. 271, 397–405. [CrossRef] [Google Scholar]
  • Fredriksen S., 2003, Food web studies in a Norwegian kelp forest based on stable isotope (δ13C and δ15N) analysis. Mar. Ecol. Prog. Ser. 260, 71–81. [CrossRef] [Google Scholar]
  • Fry B., 1988, Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol. Oceanogr. 33, 1182–1190. [CrossRef] [Google Scholar]
  • Gagnon P., Himmelman J.H., Johnson L.E., 2004, Temporal variation in community interfaces: kelp-bed boundary dynamics adjacent to persistent urchin barrens. Mar. Biol. 144, 1191–1203. [CrossRef] [Google Scholar]
  • Gaymer C.F., Himmelman J.H., Johnson L.E., 2001, Distribution and feeding ecology of the seastars Leptasterias polaris and Asterias vulgaris in the northern Gulf of St. Lawrence, Canada. J. Mar. Biol. Assoc. UK 81, 827–843. [CrossRef] [Google Scholar]
  • Hardy C.M., Krull E.S., Hartley D.M., Oliver R.L., 2010, Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. 19, 197–212. [CrossRef] [Google Scholar]
  • Himmelman J.H., 1991, Diving observations of subtidal communities in the northern Gulf of St. Lawrence. Can. Spec. Publ. Fish. Aquat. Sci. 113, 319–332. [Google Scholar]
  • Himmelman J.H., Cardinal A., Bourget E., 1983, Community development following removal of urchins, Strongylocentrotus droebachiensis, from the rocky subtidal zone of the St. Lawrence Estuary, Eastern Canada. Oecologia 59, 27–39. [CrossRef] [PubMed] [Google Scholar]
  • Himmelman J.H., Dutil C., 1991, Distribution, population structure and feeding of subtidal seastars in the northern Gulf of St. Lawrence. Mar. Ecol. Prog. Ser. 76, 61–72. [CrossRef] [Google Scholar]
  • Himmelman J.H., Hamel J.-R., 1993, Diet, behavior and reproduction of the whelk Buccinum undatum in the northern Gulf of St. Lawrence, eastern Canada. Mar. Biol. 116, 423–430. [CrossRef] [Google Scholar]
  • Himmelman J.H., Steele D.H., 1971, Foods and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters. Mar. Biol. 9, 315–322. [CrossRef] [Google Scholar]
  • Hobson K.A., Welch H.E., 1992, Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18. [CrossRef] [Google Scholar]
  • Jenkins S.R., Arenas F., Arrontes J., Bussell J., Castro J., Coleman R.A., Hawkins S.J., Kay S., Martinez B., Oliveros J., Roberts M.F., Sousa S., Thompson R.C., Hartnoll R.G., 2001, European-scale analysis of seasonal variability in limpet grazing activity and microalgal abundance. Mar. Ecol. Prog. Ser. 211, 193–203. [CrossRef] [Google Scholar]
  • Kaehler S., Pakhomov E.A., McQuaid C.D., 2000, Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 208, 13–20. [CrossRef] [Google Scholar]
  • Latyshev N.A., Khardin A.S., Kasyanov S.P., Ivanova M.B., 2004, A study on the feeding ecology of chitons using analysis of gut contents and fatty acid markers. J. Molluscan Stud. 70, 225–230. [CrossRef] [Google Scholar]
  • Lesage V., Hammill M.O., Kovacs K.M., 2001, Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 210, 203–221. [CrossRef] [Google Scholar]
  • Martineau C., Vincent W.F., Frenette J.-J., Dodson J.J., 2004, Primary consumers and particulate organic matter: Isotopic evidence of strong selectivity in the estuarine transition zone. Limnol. Oceanogr. 49, 1679–1686. [CrossRef] [Google Scholar]
  • McCann K., Hastings A., 1997, Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B Biol. Sci. 264, 1249–1254. [CrossRef] [Google Scholar]
  • McCann K.S., 2000, The diversity-stability debate. Nature 405, 228–233. [CrossRef] [PubMed] [Google Scholar]
  • McCutchan J.H., Lewis W.M., Kendall C., McGrath C.C., 2003, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. [CrossRef] [Google Scholar]
  • Minagawa M., Wada E., 1984, Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. [CrossRef] [Google Scholar]
  • Nadon M.-O., Himmelman J.H., 2006, Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consumers been misinterpreted? Limnol. Oceanogr. 51, 2828–2836. [Google Scholar]
  • Namba T., Tanabe K., Maeda N., 2008, Omnivory and stability of food webs. Ecol. complex. 5, 73–85. [CrossRef] [Google Scholar]
  • Perron F.E., 1978, Seasonal burrowing behavior and ecology of Aporrhais-occidentalis (Gastropoda Strombacea). Biol. Bull. 154, 463–471. [CrossRef] [PubMed] [Google Scholar]
  • Pimm S.L., 1982, Food webs. London, Chapman & Hall. Population and community biology series. [Google Scholar]
  • Riera P., Richard P., 1997, Temporal variation of δ13C in particulate organic matter and oyster Crassostrea gigas in Marennes-Oléron Bay (France): effect of freshwater inflow. Mar. Ecol. Prog. Ser. 147, 105–115. [CrossRef] [Google Scholar]
  • Rochette R., Morissette S., Himmelman J.H., 1995, A flexible response to a major predator provides the whelk Buccinum undatum L. with nutritional gains. J. Exp. Mar. Biol. Ecol. 185, 167–180. [CrossRef] [Google Scholar]
  • Rodriguez S.R., 2003, Consumption of drift kelp by intertidal populations of the sea urchin Tetrapygus niger on the central Chilean coast: possible consequences at different ecological levels. Mar. Ecol. Prog. Ser. 251, 141–151. [CrossRef] [Google Scholar]
  • Schaal G., Riera P., Leroux C., Grall J., 2010, A seasonal stable isotope survey of the food web associated to a peri-urban rocky shore. Mar. Biol. 157, 283–294. [CrossRef] [Google Scholar]
  • Sebens K.P., Koehl M.A.R., 1984, Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar. Biol. 81, 255–271. [CrossRef] [Google Scholar]
  • Simenstad C.A., Duggins D.O., Quay P.D., 1993, High turnover of inorganic carbon in kelp habitats as a cause of δ13C variability in marine food webs. Mar. Biol. 116, 147–160. [CrossRef] [Google Scholar]
  • Stephenson R.L., Tan F.C., Mann K.H., 1984, Stable carbon isotope variability in marine macrophytes and its implications for food web studies. Mar. Biol. 81, 223–230. [CrossRef] [Google Scholar]
  • Stephenson R.L., Tan F.C., Mann K.H., 1986, Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 30, 1–7. [CrossRef] [Google Scholar]
  • Tan F.C., Strain P.M., 1979, Carbon isotope ratios of particulate organic matter in the Gulf of St. Lawrence. J. Fish. Res. Board Can. 36, 678–682. [Google Scholar]
  • Tanabe K., Namba T., 2005, Omnivory creates chaos in simple food web models. Ecology 86, 3411–3414. [CrossRef] [Google Scholar]
  • Thomas B., 1988, L’utilisation des ressources infralittorales par une communauté de poissons démersaux. M.Sc. Laval Univ. Département de biologie. [Google Scholar]
  • Tieszen L.L., Boutton T.W., Tesdahl K.G., Slade N.A., 1983, Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37. [CrossRef] [PubMed] [Google Scholar]
  • van Oevelen D., Soetaert K., Franco M.A., Moodley L., van Ijzerloo L., Vincx M., Vanaverbeke J., 2009, Organic matter input and processing in two contrasting North Sea sediments: insights from stable isotope and biomass data. Mar. Ecol. Prog. Ser. 380, 19–32. [CrossRef] [Google Scholar]
  • Vander Zanden M.J., Rasmussen J.B., 2001, Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066. [CrossRef] [Google Scholar]
  • Vanderklift M.A., Ponsard S., 2003, Sources of variation in consumer-diet delta N-15 enrichment: a meta-analysis. Oecologia 136, 169–182. [CrossRef] [PubMed] [Google Scholar]
  • Yatsuya K., Nakahara H., 2004, Diet and stable isotope ratios of gut contents and gonad of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fish. Sci. 70, 285–292. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.