Open Access
Issue
Aquat. Living Resour.
Volume 38, 2025
Article Number 19
Number of page(s) 14
Section Small pelagic fish in changing social-ecological systems
DOI https://doi.org/10.1051/alr/2025018
Published online 31 October 2025
  • Albo-Puigserver M, Muñoz A, Navarro J, Coll M, Pethybridge H, Sánchez S, Palomera I. 2017. Ecological energetics of forage fish from the Mediterranean Sea: seasonal dynamics and interspecific differences. Deep Sea Res Part II: Top Stud Oceanogr 140: 74–82. [Google Scholar]
  • Albo-Puigserver M, Sánchez S, Coll M, Bernal M, Sáez-Liante R, Navarro J, Palomera I. 2020. Year-round energy dynamics of sardine and anchovy in the north-western Mediterranean Sea. Mar Environ Res 159: 105021. [Google Scholar]
  • Anthony JA, Roby DD, Turco KR. 2000. Lipid content and energy density of forage fishes from the northern Gulf of Alaska. J Exp Mar Biol Ecol 248: 53–78. [Google Scholar]
  • Baltasar RQ, Burge EJ, Crane DP. 2021. Effects of frozen storage on fish wet weight, percent dry weight, and length revisited. N Am J Fish Manag 41: 1744–1751. [Google Scholar]
  • Bayse SM, Regish AM, McCormick SD. 2018. Proximate composition, lipid utilization and validation of a non-lethal method to determine lipid content in migrating American shad Alosa sapidissima. J Fish Biol 92: 1832–1848. [Google Scholar]
  • Beamish FWH, Niimi AJ, Lett PFKP. Bioenergetics of teleost fishes: environmental influences, in: L. Bolis, S.H.P. Maddrell, K. Schmidt-Nielsen (Eds.), Compara-Tive Physiology: Functional Aspects of Structural Materials. North-Holland Publishing Company, Amsterdam, 1975, pp. 187–209. [Google Scholar]
  • Beckensteiner J, Villasante S, Charles A, Petitgas P, Le Grand C, Thébaud O. 2024. A systemic approach to analyzing post-collapse adaptations in the Bay of Biscay anchovy fishery. Can J Fish Aquat Sci 81: 1154–1173. [Google Scholar]
  • Benoit-Bird KJ. 2004. Prey caloric value and predator energy ne edsforaging predictions for wild spinner dolphins. Mar Biol 145. https://doi.org/10.1007/s00227-004-1339-1. [Google Scholar]
  • Breck JE. 2014. Body composition in fishes: body size matters. Aquaculture 433: 40–49. [Google Scholar]
  • Breck JE. 2008. Enhancing bioenergetics models to account for dynamic changes in fish body composition and energy density. Trans Am Fish Soc 137: 340–356. [Google Scholar]
  • Brett JR, Groves TDD. Physiological energetics, in: W.S. Hoar, D.J. Randall, J.R. Brett (Eds.), Fish physiology, Academic Press, New York, Vol. 8, 1979, 279–352 [Google Scholar]
  • Brosset P, Fromentin J-M., Ménard F, Pernet F, Bourdeix J-H., Bigot J-L., Van Beveren E, Pérez Roda MA, Choy S, Saraux C. 2015. Measurement and analysis of small pelagic fish condition: a suitable method for rapid evaluation in the field. J Exp Mar Biol Ecol 462: 90–97. [Google Scholar]
  • Brosset P, Fromentin J-M., Van Beveren E, Lloret J, Marques V, Basilone G, Bonanno A, Carpi P, Donato F, Čikeš Keč V, De Felice A, Ferreri R, Gašparević D, Giráldez A, Gücü A, Iglesias M,Leonori I, Palomera I, Somarakis S, Tičina V, Torres P, Ventero A, Zorica B, Ménard F, Saraux C. 2017. Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas. Prog Oceanogr 151: 149–162. [Google Scholar]
  • Brosset P, Averty A, Mathieu-Resuge M, Schull Q, Soudant P, Lebigre C. 2023. Fish morphometric body condition indices reflect energy reserves but other physiological processes matter. Ecol Indic 154: 110860. [Google Scholar]
  • Campanini C, Albo-Puigserver M, Gérez S, Lloret-Lloret E, Giménez J, Pennino MG, Bellido JM, Colmenero AI, Coll M. 2021. Energy content of anchovy and sardine using surrogate calorimetry methods. Mar Environ Res 172: 105510. [Google Scholar]
  • Canales TM, Law R, Wiff R, Blanchard JL. 2015. Changes in the size-structure of a multispecies pelagic fishery off Northern Chile. Fish Res 161: 261–268. [Google Scholar]
  • Carroll G, Brodie S, Whitlock R, Ganong J, Bograd SJ, Hazen E, Block BA. 2021. Flexible use of a dynamic energy landscape buffers a marine predator against extreme climate variability. Proc R Soc B. 288: 20210671. [Google Scholar]
  • Ciancio JE, Bartes S, Fernández S, Harillo C, Lancelotti J. 2020. Energy density predictors for Argentine anchovy Engraulis Anchoita, a key species of the Southwestern Atlantic Ocean. Trans Am Fish Soc 149: 204–212. [Google Scholar]
  • Ciancio JE, Pascual MA, Beauchamp DA. 2007. Energy density of Patagonian aquatic organisms and empirical predictions based on water content. Trans Am Fish Soc 136: 1415–1422. [Google Scholar]
  • Corrales X, Preciado I, Gascuel D, Lopez De Gamiz-Zearra A, Hernvann P-Y., Mugerza E, Louzao M, Velasco F, Doray M, López-López L, Carrera P, Cotano U, Andonegi E. 2022. Structure and functioning of the Bay of Biscay ecosystem: a trophic modelling approach. Estuarine, Coastal Shelf Sci 264: 107658. [Google Scholar]
  • Craig JF. 1977. The body composition of adult perch, Perca fluviatilis, in Windermere, with reference to seasonal changes and reproduction. J Anim Ecol 46: 617–632. [Google Scholar]
  • Craig JF, Kenley MJ, Talling JF. 1978. Comparative estimations of the energy content of fish tissue from bomb calorimetry, wet oxidation and proximate analysis. Freshw Biol 8: 585–590. [Google Scholar]
  • Crane DP, Killourhy CC, Clapsadl MD. 2016. Effects of three frozen storage methods on wet weight of fish. Fish Res 175: 142–147. [Google Scholar]
  • Cummins KW, Wuycheck JC. 1971. Caloric equivalents for investigations in ecological energetics: with 2 figures and 3 tables in the text. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen 18 (1): 1–158. [Google Scholar]
  • Davidson D, Marshall CT. 2010. Are morphometric indices accurate indicators of stored energy in herring Clupea harengus? J Fish Biol 76: 913–929. [Google Scholar]
  • Doray M, Petitgas P, Huret M, Duhamel E, Romagnan JB, Authier M, Dupuy C, Spitz J. 2018. Monitoring small pelagic fish in the Bay of Biscay ecosystem, using indicators from an integrated survey. Prog Oceanogr 166: 168–188. [Google Scholar]
  • Duarte LO, Garcı́a CB. 2004. Trophic role of small pelagic fishes in a tropical upwelling ecosystem. Ecol Modell 172: 323–338. [Google Scholar]
  • Dubreuil J, Petitgas P. 2009. Energy density of anchovy Engraulis encrasicolus in the Bay of Biscay. J Fish Biol 74: 521–534. [Google Scholar]
  • Favreau A, Doray M, Spitz J, Mestre SL, Huret M. 2025. Condition states in anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) revealed by energy and proximate composition relationships. [Google Scholar]
  • Gatti P, Cominassi L, Duhamel E, Grellier P, Le Delliou H, Le Mestre S, Petitgas P, Rabiller M, Spitz J, Huret M. 2018. Bioenergetic condition of anchovy and sardine in the Bay of Biscay and English Channel. Prog Oceanogr 166: 129–138. [Google Scholar]
  • Gatti P, Petitgas P, Huret M. 2017. Comparing biological traits of anchovy and sardine in the Bay of Biscay: a modelling approach with the dynamic energy budget. Ecol Modell 348: 93–109. [Google Scholar]
  • Glover DC, DeVries DR, Wright RA, Davis DA. 2010. Sample preparation techniques for determination of fish energy density via bomb calorimetry: an evaluation using largemouth bass. Trans Am Fish Soc 139: 671–675. [Google Scholar]
  • Golet W, Record N, Lehuta S, Lutcavage M, Galuardi B, Cooper A, Pershing A. 2015. The paradox of the pelagics: why bluefin tuna can go hungry in a sea of plenty. Mar Ecol Prog Ser 527: 181–192. [Google Scholar]
  • Groves TDD. 1970. Body composition changes during growth in young sockeye (Oncorhynchus nerka) in fresh water. J Fish Res Bd Can 27: 929–942. [Google Scholar]
  • Gubiani ÉA, Ruaro R, Ribeiro VR, Fé ÚMG, de S. 2020. Relative condition factor: Le Cren's legacy for fisheries science. Acta Limnol Bras 32: e3. [Google Scholar]
  • Hartman K, Brandt S. 1995. Estimating energy density of fish. Trans Am Fish Soc 124: 347–355. [Google Scholar]
  • Huang K, Zhu G. 2023. Fatty acid composition and energy allocation in muscle and gonad tissues indicate that the female mackerel icefish Champsocephalus gunnari is an income breeder. J Fish Biol 103: 460–471. [Google Scholar]
  • Huret M, Favreau A, Gatti P, Le Mestre S. 2024. Energy density and proximal composition of anchovy and sardine along the french Atlantic coast. SEANOE. https://doi.org/10.17882/101384. [Google Scholar]
  • ICES. 2024. Working Group on Southern Horse Mackerel, Anchovy and Sardine. [Google Scholar]
  • Jakob EM, Marshall SD, Uetz GW. 1996. Estimating fitness: a comparison of body condition indices. Oikos 77: 61–67. [Google Scholar]
  • James DA, Csargo IJ, Von Eschen A, Thul MD, Baker JM, Hayer C-A., Howell J, Krause J, Letvin A, Chipps SR. 2012. A generalized model for estimating the energy density of invertebrates. Freshw Sci 31: 69–77. [Google Scholar]
  • Jørgensen C, Fiksen Ø. 2006. State-dependent energy allocation in cod (Gadus morhua). Can J Fish Aquat Sci 63: 186–199. [CrossRef] [Google Scholar]
  • Kent M. 1990. Hand-held instrument for fat/water determination in whole fish. Food Control 1: 47–53. [Google Scholar]
  • Kotiaho JS. 1999. Estimating fitness: comparison of body condition indices revisited. Oikos 87: 399–400. [Google Scholar]
  • Labocha MK, Schutz H, Hayes JP. 2014. Which body condition index is best? Oikos 123: 111–119. [Google Scholar]
  • Le Cren ED. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J Anim Ecol 20: 201–219. [CrossRef] [Google Scholar]
  • Lindegren M, Östman Ö, Gårdmark A. 2011. Interacting trophic forcing and the population dynamics of herring. Ecology 92: 1407–1413. [Google Scholar]
  • McClatchie S, Hendy IL, Thompson AR, Watson W. 2017. Collapse and recovery of forage fish populations prior to commercial exploitation. Geophys Res Lett 44: 1877–1885. [Google Scholar]
  • McPherson LR, Slotte A, Kvamme C, Meier S, Marshall CT. 2011. Inconsistencies in measurement of fish condition: a comparison of four indices of fat reserves for Atlantic herring (Clupea harengus). ICES J Mar Sci 68: 52–60. [Google Scholar]
  • Molnár PK, Klanjscek T, Derocher AE, Obbard ME, Lewis MA. 2009. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears. J Exp Biol 212: 2313–2323. [Google Scholar]
  • Nunes C, Silva A, Soares E, Ganias K. 2011. The use of hepatic and somatic indices and histological information to characterize the reproductive dynamics of Atlantic Sardine Sardina pilchardus from the Portuguese coast. Mar Coast Fish 3: 127–144. [Google Scholar]
  • Österblom H, Olsson O, Blenckner T, Furness RW. 2008. Junk-food in marine ecosystems. Oikos 117: 967–977. [Google Scholar]
  • Ouled-Cheikh J, Giménez J, Albo-Puigserver M, Navarro J, Fernández-Corredor E, Bellido J, Pennino M, Coll M. 2022. Trophic importance of small pelagic fish to marine predators of the Mediterranean Sea. Mar Ecol Prog Ser 696: 169–184. [Google Scholar]
  • Pagano, Durner, Rode. 2018. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. https://doi.org/10.1126/science.aan8677. [Google Scholar]
  • Paine RT. 1971. The measurement and application of the calorie to ecological problems. Annu Rev Ecol Syst 2: 145–164. [Google Scholar]
  • Peig J, Green AJ. 2009. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118: 1883–1891. [CrossRef] [Google Scholar]
  • Pothoven SA, Fahnenstiel GL. 2014. Declines in the energy content of yearling non-native alewife associated with lower food web changes in Lake Michigan. Fish Manag Ecol 21: 439–447. [Google Scholar]
  • R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ [Google Scholar]
  • Rooper CN, Boldt JL, Uriarte A, Hansen C, Ward T, Gaichas S. 2024. Small pelagic fish: new frontiers in science and sustainable management. Can J Fish Aquat Sci 81: 984–989. [Google Scholar]
  • Sáez-Plaza P, Michałowski T, Navas MJ, Asuero AG, Wybraniec S. 2013. An overview of the Kjeldahl method of Nitrogen determination. Part I. early history, chemistry of the procedure, and titrimetric finish. Crit Rev Anal Chem 43: 178–223. [Google Scholar]
  • Saraux C, Van Beveren E, Brosset P, Queiros Q, Bourdeix J-H., Dutto G, Gasset E, Jac C, Bonhommeau S, Fromentin J-M. 2019. Small pelagic fish dynamics: a review of mechanisms in the Gulf of Lions. Deep Sea Res Part II: Top Stud Oceanogr 159: 52–61. [Google Scholar]
  • Sardenne F, Chassot E, Fouché E, Ménard F, Lucas V, Bodin N. 2016. Are condition factors powerful proxies of energy content in wild tropical tunas? Ecol Indic 71: 467–476. [Google Scholar]
  • Schloesser RW, Fabrizio MC. 2015. Relationships among proximate components and energy density of Juvenile Atlantic Estuarine fishes. Trans Am Fish Soc 144: 942–955. [Google Scholar]
  • Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fletcher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevárez-Martínez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ. 1999. Worldwide large-scale fluctuations of sardine and anchovy populations. South Afr J Mar Sci 21: 289–347. [Google Scholar]
  • Shulman GE, Love RM, The biochemical ecology of marine fishes, advances in marine biology. San Diego: Acad. Press, 1999, vol. 36, 351 pp. [Google Scholar]
  • Spitz J, Jouma'a J. 2013. Variability in energy density of forage fishes from the Bay of Biscay (north-east Atlantic Ocean): reliability of functional grouping based on prey quality. J Fish Biol 82: 2147–2152. [Google Scholar]
  • Spitz J, Ridoux V, Trites AW, Laran S, Authier M. 2018. Prey consumption by cetaceans reveals the importance of energy-rich food webs in the Bay of Biscay. Prog Oceanogr 166: 148–158. [Google Scholar]
  • Stevenson RD, Woods WA. 2006. Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46: 1169–1190. [Google Scholar]
  • Taboada FG, Chust G, Santos Mocoroa M, Aldanondo N, Fontán A, Cotano U, Álvarez P, Erauskin-Extramiana M, Irigoien X, Fernandes-Salvador JA, Boyra G, Uriarte A, Ibaibarriaga L. 2024. Shrinking body size of European anchovy in the Bay of Biscay. Glob Change Biol 30: e17047. [Google Scholar]
  • Tirelli V, Borme D, Tulli F, Cigar M, Fonda Umani S, Brandt SB. 2006. Energy density of anchovy Engraulis encrasicolus L. in the Adriatic Sea. J Fish Biol 68: 982–989. [Google Scholar]
  • Trites AW, Donnelly CP. 2003. The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal Rev 33: 3–28. [Google Scholar]
  • Trudel M, Tucker S, Morris JFT, Higgs DA, Welch DW. 2005. Indicators of Energetic Status in Juvenile Coho Salmon and Chinook Salmon. North Am J Fish Manag 25: 374–390. [Google Scholar]
  • Van Beveren E, Bonhommeau S, Fromentin J-M., Bigot J-L., Bourdeix J-H., Brosset P, Roos D, Saraux C. 2014. Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean. Mar Biol 161: 1809–1822. [Google Scholar]
  • Véron M, Duhamel E, Bertignac M, Pawlowski L, Huret M. 2020. Major changes in sardine growth and body condition in the Bay of Biscay between 2003 and 2016: Temporal trends and drivers. Prog Oceanogr 182: 102274. [Google Scholar]
  • Wessels G, Moloney CL, Van Der Lingen CD. 2010. The effects of freezing on the morphometrics of sardine Sardinops sagax (Jenyns, 1842). Fish Res 106: 528–534. [Google Scholar]
  • Wilder SM, Raubenheimer D, Simpson SJ. 2016. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct Ecol 30: 108–115. [Google Scholar]
  • Wilson AJ, Nussey DH. 2010. What is individual quality? An evolutionary perspective. Trends Ecol Evol 25: 207–214. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.