Open Access
Issue |
Aquat. Living Resour.
Volume 37, 2024
|
|
---|---|---|
Article Number | 17 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/alr/2024015 | |
Published online | 17 December 2024 |
- Adrian R. 1999. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J Plankton Res 21: 2175–2190. [CrossRef] [Google Scholar]
- Ahlgren G. 1993. Seasonal variation of fatty acid content in natural phytoplankton in two eutrophic lakes. A factor controlling zooplankton species? SIL Proc 1922–2010 25: 144–149. [Google Scholar]
- Anderson MJ, Gorley RN, Clarke, KR. 2008. PERMANOVA + for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth. [Google Scholar]
- Aubin J, Baizeau V, Jaeger C, Roucaute M, Gamito S. 2021. Modeling trophic webs in freshwater fishpond systems using Ecopath: towards better polyculture management. Aquac Environ Interact 13: 311–322. [CrossRef] [Google Scholar]
- Aubin J, Callier M, Rey-Valette H, Mathé S, Wilfart A, Legendre M, Slembrouck J, Caruso D, Chia E, Masson G, Blancheton JP, Ediwarman, Haryadi J, Prihadi TH, De Matos Casaca J, Tamassia STJ, Tocqueville A, Fontaine P. 2019. Implementing ecological intensification in fish farming: definition and principles from contrasting experiences. Rev Aquac 11: 149–167. [CrossRef] [Google Scholar]
- Baltadakis A, Casserly J, Falconer L, Sprague M, Telfer T. 2020. European lobsters utilise Atlantic salmon wastes in coastal integrated multi-trophic aquaculture systems. Aquac Environ Interact 12: 485–494. [CrossRef] [Google Scholar]
- Barrington K, Chopin T, Robinson S. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters, in: Soto D (Ed.), Integrated Mariculture: A Global Review. FAO, Rome 2009, pp. 7–46. [Google Scholar]
- Bischoff AA, Fink P, Waller U. 2009. The fatty acid composition of Nereis diversicolor cultured in an integrated recirculated system: Possible implications for aquaculture. Aquaculture 296: 271–276. [CrossRef] [Google Scholar]
- Budge SM, Parrish CC, Mckenzie CH. 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalve aquaculture site. Mar Chem 76: 285–303. [CrossRef] [Google Scholar]
- Burns CW, Gilbert JJ. 1993. Predation on ciliates by freshwater calanoid copepods: rates of predation and relative vulnerabilities of prey. Freshw Biol 30: 377–393. [CrossRef] [Google Scholar]
- Chary K, Callier MD, Covès D, Aubin J, Simon J, Fiandrino A. 2021. Scenarios of fish waste deposition at the sub-lagoon scale: a modelling approach for aquaculture zoning and site selection. ICES J Mar Sci 78: 922–939. [CrossRef] [Google Scholar]
- Chen K, Li E, Li T, Xu C, Xu Z, Qin JG, Chen L. 2017. The expression of the Δ6 fatty acyl desaturase-like gene from pacific white shrimp (Litopenaeus vannamei) under different salinities and dietary lipid compositions. J Shellfish Res 36: 501–509. [CrossRef] [Google Scholar]
- Chopin T. 2006. Integrated multi-trophic aquaculture. What it is and why you should care and don’t confuse it with polyculture. North Aquac 12: 4. [Google Scholar]
- Christie WW, Han X. 2012. Preparation of derivatives of fatty acids, in: Christie WW, Han X (Eds), Lipid Analysis, 4th edn. Woodhead Publishing, pp. 145–158. [Google Scholar]
- Clarke, KR. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18: 117–143. [CrossRef] [Google Scholar]
- Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46: 225–340. [CrossRef] [PubMed] [Google Scholar]
- Deming JW, Baross JA. 1993. The early diagenesis of organic matter: bacterial activity, in: Engel MH, Macko SA (Eds.), Organic Geochemistry: Topics in Geobiology. Springer US, Boston, pp. 119–144 [Google Scholar]
- DeNiro MJ, Epstein S. 1978. Influence of diet on distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42: 495–506. [CrossRef] [Google Scholar]
- DeNiro MJ, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263. [CrossRef] [PubMed] [Google Scholar]
- Dijkman N, Kromkamp J. 2006. Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Mar Ecol Prog Ser 324: 113–125. [CrossRef] [Google Scholar]
- Dunn RJK, Welsh DT, Teasdale PR, Lee SY, Lemckert CJ, Meziane T. 2008. Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers. Cont Shelf Res 28: 2535–2549. [CrossRef] [Google Scholar]
- FAO. In Brief to the State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO, Rome, 2022. [Google Scholar]
- Fernandez-Jover D, Sanchez-Jerez P, Bayle-Sempere JT, Arechavala-Lopez P, Martinez-Rubio L, Jimenez JAL, Lopez FJM. 2009. Coastal fish farms are settlement sites for juvenile fish. Mar Environ Res 68: 89–96. [CrossRef] [PubMed] [Google Scholar]
- Froese R, Pauly D. 2022. FishBase. World Wide Web electronic publication. www.fishbase.org, version (02/2022) [Google Scholar]
- Grey J, Waldron S, Hutchinson R. 2004. The utility of carbon and nitrogen isotope analyses to trace contributions from fish farms to the receiving communities of freshwater lakes: a pilot study in Esthwaite Water, UK. Hydrobiologia 524: 253–262. [CrossRef] [Google Scholar]
- Guinan M, Kapuscinski K, Teece M. 2015. Seasonal diet shifts and trophic position of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Linnaeus, 1758), in the upper Niagara River. Aquat Invasions 10: 217–225. [CrossRef] [Google Scholar]
- Hanson BJ, Cummins KW, Cargill AS, Lowry RR. 1985. Lipid content, fatty acid composition, and the effect of diet on fats of aquatic insects. Comp Biochem Physiol Part B Comp Biochem 80: 257–276. [CrossRef] [Google Scholar]
- Indarti E, Majid M, Hashim R, Shu-Chien A. 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J Food Compos Anal 18: 161–170. [CrossRef] [Google Scholar]
- Jaeger C, Aubin J. 2018. Ecological intensification in multi-trophic aquaculture ponds: an experimental approach. Aquat Living Resour 31: 36. [CrossRef] [EDP Sciences] [Google Scholar]
- Jaeger C, Roucaute M, Nahon S. 2021. Effects of a lagoon on performances of a freshwater fishpond in a multi-trophic aquaculture system. Aquat Living Resour 34: 4. [CrossRef] [EDP Sciences] [Google Scholar]
- Jaschinski S, Brepohl DC, Sommer U. 2011. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquat Sci 73: 91–101. [CrossRef] [Google Scholar]
- Jones JI, Waldron S. 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes: Stable isotope analysis in plant-dominated lakes. Freshw Biol 48: 1396–1407. [CrossRef] [Google Scholar]
- Jover M, Fernández-Carmona J, Del Rı́o MC, Soler M. 1999. Effect of feeding cooked-extruded diets, containing different levels of protein, lipid and carbohydrate on growth of red swamp crayfish (Procambarus clarkii). Aquaculture 178: 127–137. [CrossRef] [Google Scholar]
- Kelly J, Scheibling R. 2012. Fatty acids as dietary traces in benthic food webs. Mar Ecol Prog Ser 446: 1–22. [CrossRef] [Google Scholar]
- Kibria ASMD, Haque MM. 2018. Potentials of integrated multi-trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquac Rep 11: 8–16. [CrossRef] [Google Scholar]
- Kusche H, Hillgruber N, Röbner Y, Focken U. 2017. Plant protein-based feeds and commercial feed enable isotopic tracking of aquaculture emissions into marine macrozoobenthic bioindicator species. Isotopes Environ Health Stud 53: 261–273. [CrossRef] [PubMed] [Google Scholar]
- Lewis T, Nichols PD, McMeekin TA. 2000. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43: 107–116. [CrossRef] [PubMed] [Google Scholar]
- Lillebø AI, Cleary DFR, Marques B, Reis A, Lopes Da Silva T, Calado R. 2012. Ragworm fatty acid profiles reveal habitat and trophic interactions with halophytes and with mercury. Mar Pollut Bull 64: 2528–2534. [CrossRef] [PubMed] [Google Scholar]
- Ling C, Weimin W. 2010. Wastewater management in freshwater pond aquaculture in China, in: Sumi A, Fukushi K, Honda R, Hassan KM (Eds.), Sustainability in Food and Water. Alliance for Global Sustainability Bookseries Springer Netherlands, Dordrecht, pp. 181–190. [Google Scholar]
- Mao ZG, Gu XH, Zeng QF, Chen HH. 2016. Carbon sources and trophic structure in a macrophyte-dominated polyculture pond assessed by stable-isotope analysis. Freshw Biol 61: 1862–1873. [CrossRef] [Google Scholar]
- Martin-Creuzburg D, Kowarik C, Straile D. 2017. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects. Sci Total Environ 577: 174–182. [CrossRef] [PubMed] [Google Scholar]
- McGhie TK, Crawford CM, Mitchell IM, O’Brien D. 2000. The degradation of fish-cage waste in sediments during fallowing. Aquaculture 187: 351–366. [CrossRef] [Google Scholar]
- Middelburg JJ. 2014. Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11: 2357–2371. [CrossRef] [Google Scholar]
- Mill AC, Pinnegar JK, Polunin NVC. 2007. Explaining isotope trophic-step fractionation: why herbivorous fish are different. Funct Ecol 21: 1137–1145. [CrossRef] [Google Scholar]
- Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food-chains. Further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48: 1135–1140. [CrossRef] [Google Scholar]
- Moraes CRFD, Attayde JLD, Henry-Silva GG. 2020. Stable isotopes of C and N as dietary indicators of Nile tilapia (Oreochromis niloticus) cultivated in net cages in a tropical reservoir. Aquac Rep 18: 100458. [CrossRef] [Google Scholar]
- Müller-Navarra DC. 2006. The nutritional importance of polyunsaturated fatty acids and their use as trophic markers for herbivorous zooplankton: Does it contradict? Arch Für Hydrobiol 167: 501–513. [CrossRef] [Google Scholar]
- Nahon S, De Brito GV, Quental-Ferreira H, Aubin J, Jaeger C, Menniti C, Kerhervé P, Larroquet L, Cunha ME. 2023. Food web in Mediterranean coastal integrated multi-trophic aquaculture ponds: Learnings from fatty acids and stable isotope tracers. Aquaculture 567: 739292. [CrossRef] [Google Scholar]
- Nahon S, Roussel JM, Jaeger C, Menniti C, Kerhervé P, Mortillaro JM, Aubin J. 2020. Characterization of trophic niche partitioning between carp (Cyprinus carpio) and roach (Rutilus rutilus) in experimental polyculture ponds using carbon (δ13C) and nitrogen (δ15N) stable isotopes. Aquaculture 522: 735162. [CrossRef] [Google Scholar]
- Nahon S, Séité S, Kolasinski J, Aguirre P, Geurden I . 2017. Effects of euthanasia methods on stable carbon (δ13C value) and nitrogen (δ15N value) isotopic compositions of fry and juvenile rainbow trout Oncorhynchus mykiss. Rapid Commun Mass Spectrom 31: 1742–1748. [CrossRef] [PubMed] [Google Scholar]
- Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD. 2009. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci 106: 15103–15110. [Google Scholar]
- Nunn AD, Harvey JP, Cowx IG. 2007. The food and feeding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies II. Prey selection and the influence of gape. J Fish Biol 70: 743–757. [CrossRef] [Google Scholar]
- Nyström P, Stenroth P, Holmqvist N, Berglund O, Larsson P, Granéli W. 2006. Crayfish in lakes and streams: individual and population responses to predation, productivity and substratum availability. Freshw Biol 51: 2096–2113. [CrossRef] [Google Scholar]
- Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore 1192 JW, Jackson AL, Grey J, Kelly DJ, Inger R. 2013. Bayesian stable 1193 isotope mixing models. Environmetrics 24: 6. [Google Scholar]
- Perga ME, Kainz M, Matthews B, Mazumder A. 2006. Carbon pathways to zooplankton: insights from the combined use of stable isotope and fatty acid biomarkers. Freshw Biol 51: 2041–2051. [CrossRef] [Google Scholar]
- Pilecky M, Mathieu-Resuge M, Závorka L, Fehlinger L, Winter K, Martin-Creuzburg D, Kainz MJ. 2022. Common carp (Cyprinus carpio) obtain omega-3 long-chain polyunsaturated fatty acids via dietary supply and endogenous bioconversion in semi-intensive aquaculture ponds. Aquaculture 561: 738731. [CrossRef] [Google Scholar]
- Pouil S, Mortillaro J, Samsudin R, Caruso D, Kristanto A, Slembrouck J. 2022. Fate of commercial pellets and role of natural productivity in giant gourami ponds using stable isotope analyses. Aquaculture 547: 737484. [CrossRef] [Google Scholar]
- Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189. [CrossRef] [PubMed] [Google Scholar]
- R Core Team. 2023. R: Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
- Redmond KJ, Magnesen T, Hansen PK, Strand Ø, Meier S. 2010. Stable isotopes and fatty acids as tracers of the assimilation of salmon fish feed in blue mussels (Mytilus edulis). Aquaculture 298: 202–210. [CrossRef] [Google Scholar]
- Rudnick D, Resh V. 2005. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshw Biol 50: 1323–1336. [CrossRef] [Google Scholar]
- Saowakoon S, Saowakoon K, Jutagate A, Hiroki M, Fukushima M, Jutagate T. 2021. Growth and feeding behavior of fishes in organic rice-fish systems with various species combinations. Aquac Rep 20: 100663. [CrossRef] [Google Scholar]
- Schultz S, Koussoroplis AM, Kainz MJ. 2018. Dietary fatty acid compositions are more strongly reflected in fatty than lean dorsal fillets of common carp (Cyprinus carpio L.). Lipids 53: 727–735. [CrossRef] [PubMed] [Google Scholar]
- Schultz S, Vallant B, Kainz MJ. 2012. Preferential feeding on high quality diets decreases methyl mercury of farm-raised common carp (Cyprinus carpio L.). Aquaculture 338: 341, 105–110. [CrossRef] [PubMed] [Google Scholar]
- Sinha VRP, Oláh J. 1982. Potential of freshwater fish production in ecosystems with different management levels. Aquac Hung 201–206. [Google Scholar]
- Soto DX, Wassenaar LI, Hobson KA, Catalan J. 2011. Effects of size and diet on stable hydrogen isotope values (δD) in fish: implications for tracing origins of individuals and their food sources. Can J Fish Aquat Sci 68: 2011–2019. [CrossRef] [Google Scholar]
- Specziár A, Rezsu ET. 2009. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. J Fish Biol 75: 247–267. [CrossRef] [PubMed] [Google Scholar]
- Suhareva N, Aigars J, Poikāne R, Tunens J. 2021. The influence of feeding ecology and location on total mercury concentrations in Eurasian perch (Perca fluviatilis). Environ Sci Eur 33: 82. [Google Scholar]
- Thomas M, Pasquet A, Aubin J, Nahon S, Lecocq T. 2021. When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biol Rev 96: 767–784. [CrossRef] [PubMed] [Google Scholar]
- Tiselius P, Fransson K. 2016. Daily changes in δ15N and δ13C stable isotopes in copepods: equilibrium dynamics and variations of trophic level in the field. J Plankton Res 38: 751–761. [CrossRef] [Google Scholar]
- Tocher D. 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449: 94–107. [CrossRef] [Google Scholar]
- Urbatzka R, Beeck P, Van Der Velde FG, Borcherding J. 2008. Alternative use of food resources causes intra-cohort variation in the size distribution of young-of-the-year perch (Perca fluviatilis). Ecol Freshw Fish 17: 475–480. [CrossRef] [Google Scholar]
- Vasconi M, Caprino F, Bellagamba F, Busetto ML, Bernardi C, Puzzi C, Moretti VM. 2015. Fatty acid composition of freshwater wild fish in subalpine lakes: A comparative study. Lipids 50: 283–302. [CrossRef] [PubMed] [Google Scholar]
- White CA, Nichols PD, Ross DJ, Dempster T. 2017. Dispersal and assimilation of an aquaculture waste subsidy in a low productivity coastal environment. Mar Pollut Bull 120: 309–321. [CrossRef] [PubMed] [Google Scholar]
- Woynarovich A, Bueno PB, Altan O, Jeney Z, Reantaso M, Xinhua Y, Van Anrooy R. 2011. Better Management Practices for Carp Production in Central and Eastern Europe, the Caucasus and Central Asia. Fisheries and Aquaculture Technical Paper 566, FAO, Rome. [Google Scholar]
- Xu WN, Liu WB, Shen M, Li GF, Wang Y, Zhang W. 2013. Effect of different dietary protein and lipid levels on growth performance, body composition of juvenile red swamp crayfish (Procambarus clarkii). Aquac Int 21: 687–697. [CrossRef] [Google Scholar]
- Yokoyama H, Takashi T, Ishihi Y, Abo K. 2009. Effects of restricted feeding on growth of red sea bream and sedimentation of aquaculture wastes. Aquaculture 286: 80–88. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.