Open Access
Issue
Aquat. Living Resour.
Volume 36, 2023
Article Number 30
Number of page(s) 10
DOI https://doi.org/10.1051/alr/2023026
Published online 30 October 2023
  • Abbott R, Albach D, Ansell S, et al. 2013. Hybridization and speciation. J Evol Biol 26: 229–246. [CrossRef] [PubMed] [Google Scholar]
  • Argue BJ, Kuhlers D, Liu ZJ, Dunham RA. 2014. Growth of channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, F3, and F1 reciprocal backcross hybrids in earthen ponds. J Anim Sci 92: 4297–4305. [CrossRef] [PubMed] [Google Scholar]
  • Baer CF, Travis J. 2000. Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54: 238–244. [Google Scholar]
  • Bai C, Wang C, Xia J, Sun H, Zhang S, Huang J. 2015. Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. J Invertebr Pathol 124: 98–106. [CrossRef] [PubMed] [Google Scholar]
  • Barros J, Winkler FM, Velasco LA. 2018. Heritability, genetic correlations and genotype-environment interactions for growth and survival of larvae and post-larvae of the Caribbean scallop, Argopecten nucleus (Mollusca: Bivalvia). Aquaculture 495: 948–954. [Google Scholar]
  • Bartley DM, Rana K, Immink AJ. 2001. The use of inter-specific hybrids in aquaculture and fisheries. Rev Fish Biol Fish 10: 325–337. [Google Scholar]
  • Beattie J, Chew K, Hershberger W. 1980. Differential survival of selected strains of Pacific Oysters (Crassostrea gigas) during summer mortality. Proc Natl Shellfish Ass 70: 184–189. [Google Scholar]
  • BOF, Bureau of Fisheries, 2023. China Fisheries Statistic Yearbook 2023, Agriculture Press, Beijing, China ( in Chinese). [Google Scholar]
  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ. 2009. ASReml-R Reference Manual. Queensland Department of Primary Industries and Fisheries, NSW Department of Primary Industries, Brisbane. [Google Scholar]
  • Calvo LM, Calvo GW, Burreson E. 2003. Dual resistance in a selectively bred eastern oyster, Crassostrea virginica, strain tested in Chesapeake Bay. Aquaculture 200: 69–87. [CrossRef] [Google Scholar]
  • Camara MD, Yen S, Kaspar HF, Kesarcodi-Watson A, King N, Jeffs AG, Tremblay LA. 2017. Assessment of heat shock and laboratory virus challenges to selectively breed for ostreid herpesvirus 1 (OsHV-1) resistance in the Pacific oyster, Crassostrea gigas. Aquaculture 469: 50–58. [CrossRef] [Google Scholar]
  • Chaney ML, Gracey AY. 2011. Mass mortality in Pacific oysters is associated with specific gene expression signature. Mol Ecol 20: 2942–2954. [CrossRef] [PubMed] [Google Scholar]
  • Cheney DP, MacDonald BF, Elston RA. 2000. Summer mortality of Pacific oysters, Crassostrea gigas (Thunberg): Initial findings on multiple environmental stressors in Puget Sound, Washington, 1998. J Shellfish Res 19: 353–359. [Google Scholar]
  • Chi Y, Jiang G, Liang Y, Xu C, Li Q. 2022. Selective breeding for summer survival in Pacific oyster (Crassostrea gigas): Genetic parameters and response to selection. Aquaculture 556: 738271. [CrossRef] [Google Scholar]
  • de Verdal H, Rosario W, Vandeputte M, Muyalde N, Morissens P, Baroiller JF, Chevassus B. 2014. Response to selection for growth in an interspecific hybrid between Oreochromis mossambicus and O. niloticus in two distinct environments. Aquaculture 430: 159–165. [CrossRef] [Google Scholar]
  • de Kantzow MC, Whittington RJ, Hick P. 2019. Prior exposure to Ostreid herpesvirus 1 (OsHV-1) at 18 °C is associated with improved survival of juvenile Pacific oysters (Crassostrea gigas) following challenge at 22 °C. Aquaculture 507: 443–450. [CrossRef] [Google Scholar]
  • Dégremont L, Ernaude B, Bédier E, Boudry P. 2007. Summer mortality of hatchery-reared Pacific oyster (Crassostrea gigas). I. estimation of genetic parameters for survival and growth. Aquaculture 262: 41–53. [CrossRef] [Google Scholar]
  • Dégremont L, Bédier E, Boudry P. 2010. Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. response to selection for survival and its infiuence on growth and yield. Aquaculture 299: 21–29. [CrossRef] [Google Scholar]
  • Dégremont L, Norrry M, Maurouard E. 2015. Mass selection for survival and resistance to OsHV-1 infection in Crassostrea gigas spat in field conditions: response to selection after four generations. Aquaculture 446: 111–121. [CrossRef] [Google Scholar]
  • Ding F, Li A, Cong R, Wang X, Wang W, Que H, Zhang G, Li L. 2020. The phenotypic and the genetic response to the extreme high temperature provides new insight into thermal tolerance for the pacific oyster Crassostrea gigas. Front Mar Sci 7: 399. [CrossRef] [Google Scholar]
  • Dove M, Nell J, O'Connor W. 2013. Evaluation of the progeny of the fourth-generation Sydney rock oyster Saccostrea glomerata (Gould, 1850) breeding lines for resistance to QX disease (Marteilia sydneyi) and winter mortality (Bonamia roughleyi). Aquac Res 44: 1791–1800. [Google Scholar]
  • Dove M, Kube P, Wilkie E, Cumbo V, Raftos D, O'Connor W. 2020. New Soth Wales Department of Primery Industries (Fisheries). Accelerated Sydney rock oyster (SRO) breeding research. in: Future Oysters CRC -P Project 2016–802. [Google Scholar]
  • Doyle CM, Leberg PL, Klerks PL. 2011. Heritability of heat tolerance in a small livebearing fish, Heterandria Formosa. Ecotoxicology 20: 535–542. [CrossRef] [PubMed] [Google Scholar]
  • Falconer DS, Mackay TFC. (1996). Introduction to Quantitative Genetics, 4th edn, Pearson Education Ltd., Essex, England. [Google Scholar]
  • FAO 2023. Global Aquaculture Production. Fisheries and Aquaculture Division (online). Rome. https://www.fao.org/fishery/en/collection/aquaculture?lang=en. [Google Scholar]
  • Farley CA, Lewis EJ, Relyea D, Zahtila J, Rivara G. 1998. Resistance studies for juvenile oyster disease (JOD) 1997: some early insights into genetic aspects. J Shellfish Res 17: 352–353. [Google Scholar]
  • Fu J, Shen Y, Xu X, Li J. 2015. Genetic parameter estimates for growth of grass carp, Ctenopharyngodon idella, at 10 and 18 months of age. Aquaculture 450: 342–348. [Google Scholar]
  • Gjedrem T, Rye M. 2018. Selection response in fish and shellfish: a review. Rev Aquac 10: 168–179. [CrossRef] [Google Scholar]
  • Grant PR, Grant BR. 1994. Phenotypic and genetic effects of hybridization in Darwin's finches. Evolution 48: 297–316. [CrossRef] [Google Scholar]
  • Han Z, Guo X, Lu Z, Song Y, Chen R, Han X, Yu S, Tu K, Liu L, Que H. 2022. Heritability estimates for gonadal development traits and their genetic correlations with growth and heat tolerance traits in the Fujian Oyster Crassostrea angulata. Front Mar Sci 9: 986441. [CrossRef] [Google Scholar]
  • Hershberger WK, Perdue JA, Beattie JH. 1984. Genetic selection and systematic breeding in Pacific oyster culture. Aquaculture 39: 237–245. [CrossRef] [Google Scholar]
  • Holland WE, Smith MH, Gibbons J, Brown DH. 1974. Thermal tolerances of fish from a reservoir receiving effluent from a nuclear reactor. Physiol Zool 47: 110–118. [CrossRef] [Google Scholar]
  • Hopkins SR, Dean JM. 1975. The response of developmental stage of Fundulus to acute thermal shock. in: Vernberg FJ (Ed.), Physiological Ecology of Estuarine Organisms, University South Carolina Press, Columbia. [Google Scholar]
  • Huvet A, Herpin A, Dégremont L, Labreuche Y, Samain JF, Cunningham C. 2004. The identification of genes from the oyster Crassostrea gigas that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. Gene 343: 211–220. [CrossRef] [PubMed] [Google Scholar]
  • In VV, O'Connor W, Sang VV, Van PT, Knibb W. 2017. Resolution of the controversial relationship between Pacific and Portuguese oysters internationally and in Vietnam. Aquaculture 473: 389–399. [CrossRef] [Google Scholar]
  • Ineno T, Tsuchida S, Kanda M, Watabe S. 2005. Thermal tolerance of a rainbow trout Oncorhynchus mykiss strain selected by high-temperature breeding. Fish Sci 71: 767–775. [CrossRef] [Google Scholar]
  • Ineno T, Tamaki K, Yamada K, Kodama R, Tsuchida S, Tan E, Watabe S. 2018. Thermal tolerance of a thermally selected strain of rainbow trout Oncorhynchus mykiss and the pedigrees of its F1 and F2 generations indicated by their critical thermal maxima. Fish Sci 84: 671–679. [CrossRef] [Google Scholar]
  • Jiang G, Li Q, Xu C, Liu S, Kong L, Yu H. 2021. Reciprocal hybrids derived from Crassostrea gigas and C. angulata exhibit high heterosis in growth, survival and thermotolerance in northern China. Aquaculture 545: 737173. [CrossRef] [Google Scholar]
  • Jiang G, Zhou J, Cheng G, Meng L, Chi Y, Xu C, Li Q. 2022. Examination of survival, physiological parameters and immune response in relation to the thermo-resistant heterosis of hybrid oysters derived from Crassostrea gigas and C. angulata. Aquaculture 559: 738454. [CrossRef] [Google Scholar]
  • Jiang G, Chi Y, Zhou J, Cheng G, Du L, Xu C, Li Q. 2023. Phenotypic evaluation of two genetically improved strains selected from the reciprocal hybrids of Crassostrea gigas and C. angulata. Aquaculture 576: 739808. [CrossRef] [Google Scholar]
  • Jonasson J, Stefansson SE, Gudnasonm A, Steinarsson A. 1999. Genetic variation for survival and shell length of cultured red abalone (Haliotis rufescens) in Iceland. J Shellfish Res 18: 621–625. [Google Scholar]
  • Juárez OE, Escodedo-Fregoso C, Arredondo-Espinoza R, Ibarra AM. 2021. Development of SNP markers for identification of thermo-resistant families of the Pacific oyster Crassostrea gigas based on RNA- s eq. Aquaculture 539: 736618. [CrossRef] [Google Scholar]
  • Keeling S, Brosnahan C, Williams R, Gias E, Hannah M, Bueno R, McDonald W, Johnston C. 2014. New Zealand juvenile oyster mortality associated with ostreid herpesvirus 1 − an opportunistic longitudinal study. Dis Aquat Org 109: 231–239. [CrossRef] [PubMed] [Google Scholar]
  • Li Q, Wang Q, Liu S, Kong L. 2011. Selection response and realized heritability for growth in three stocks of the Pacific oyster Crassostrea gigas. Fish Sci 77: 643–648. [CrossRef] [Google Scholar]
  • Li X, Shi C, Yang B, Li Q, Liu S. 2023. High temperature aggravates mortalities of the Pacific oyster (Crassostrea gigas) infected with Vibrio: a perspective from homeostasis of digestive microbiota and immune response. Aquaculture 568: 739309. [CrossRef] [Google Scholar]
  • Lian W, Weng H, Mao Y, Fang J. 2010. Study on the relationship between Pacific oyster Crassostrea gigas summer mortality with culture environment and organism condition. Prog Fish Sci 31: 92–100 (in Chinese). [Google Scholar]
  • Liang B, Jiang F, Zhang S, Yue X, Wang H, Liu B. 2017. Genetic variation in vibrio resistance in the clam Meretrix petechialis under the challenge of Vibrio parahaemolyticus. Aquaculture 468: 458–463. [CrossRef] [Google Scholar]
  • Lu X, Luan S, Cao B, Sui J, Dai P, Meng X, Luo K, Kong J. 2017. Heterosis and heritability estimates for the survival of the Pacific white shrimp (Litopenaeus vannamei) under the commercial scale ponds. Acta Oceanol Sin 36: 62–68. [CrossRef] [Google Scholar]
  • Lynch M, Walsh JB. 1998. Genetics and Analysis of Quantitative Traits, Sinauer Assocs., Inc., Sunderland, MA. [Google Scholar]
  • Mao Y, Zhou Y, Yang H, Yuan X, Wen H, Wang R. 2005. Seasonal variation in metabolic rate of Pacific oyster, Crassostrea gigas and its implication to summer mortality. Oceanol Limnol Sin 36: 445–451 (in Chinese). [Google Scholar]
  • Nell JA, Perkins B. 2006. Evaluation of the progeny of third-generation Sydney rock oyster Saccostrea glomerata (Gould, 1850) breeding lines for resistance to QX disease marteilia sydneyi and winter mortality Bonamia roughleyi. Aquac Res 37: 693–700. [CrossRef] [Google Scholar]
  • Nguyen NH, Khaw HL, Ponzoni RW, Hamzah A, Kamaruzzaman N. 2007. Can sexual dimorphism and body shape be altered in Nile tilapia (Oreochromis niloticus) by genetic means? Aquaculture 272: S38– S46. [Google Scholar]
  • Nguyen TTT, Hayes B, Ingram BA. 2014. Genetic parameters and response to selection in blue mussel (Mytilus galloprovincialis) using a SNP-based pedigree. Aquaculture 420-421: 295–301. [Google Scholar]
  • Noble TH, Coman GJ, Wade NM, Thomson PC, Raadsma HW, Khatkar MS, Guppy JL, Jerry DR. 2020. Genetic parameters for tolerance to gill-associated virus under challenge-test conditions in the black tiger shrimp (Penaeus monodon). Aquaculture 516: 734428. [CrossRef] [Google Scholar]
  • Ødegård J, Meuwissen TH, Heringstad B, Madsen P. 2010. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference. Genet Sel Evol 42: 29. [CrossRef] [PubMed] [Google Scholar]
  • Ødegård J, Gitterle T, Madsen P, Meuwissen TH, Yazdi MH, Gjerde B, Pulgarin C, Rye M. 2011. Quantitative genetics of taura syndrome resistance in pacific white shrimp (Penaeus vannamei): a cure model approach. Genet Sel Evol 43: 14. [CrossRef] [PubMed] [Google Scholar]
  • Perry GML, Martyniuk CM, Ferguson MM, Danzmann RG. 2005. Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 250: 120–128. [CrossRef] [Google Scholar]
  • Rezk MA, Ponzoni RW, Khaw HL, Kamel E, Dawood T, John G. 2009. Selective breeding for increased body weight in a synthetic breed of Egyptian Nile tilapia, Oreochromis niloticus: response to selection and genetic parameters. Aquaculture 293: 187–194. [Google Scholar]
  • Samain JF, McCombie H. 2008. Summer mortality of Pacific oyster Crassostrea gigas, Ed. Quae. pp 379. [Google Scholar]
  • Setyawan P, Aththar MHF, Imron I, Gunadi B, Haryadi J, Bastiaansen JWM, Camara MD, Komen H. 2022. Genetic parameters and genotype by environment interaction in a unique Indonesian hybrid tilapia strain selected for production in brackish water pond culture. Aquaculture 561: 738626. [CrossRef] [Google Scholar]
  • Sheridan AK. 1997. Genetic improvement of oyster production-a critique. Aquaculture 153: 165–179. [CrossRef] [Google Scholar]
  • Steffens W, Jachinen H, Fredrich F. 1990. Possibilities of sturgeon culture in central Europe. Aquaculture 89: 101–122. [CrossRef] [Google Scholar]
  • Thodesen J, Rye M, Wang Y, Li S, Bentsen HB, Gjedrem T. 2013. Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth, pond survival and cold-water tolerance of blue tilapia (Oreochromis aureus) after four generations of multi-trait selection. Aquaculture 396–399: 32–42. [Google Scholar]
  • Vehviläinen H, Kause A, Quinton C, Koskinen H, Paananen T. 2008. Survival of the currently fittest: genetics of Rainbow trout survival across time and space. Genetics 180: 507–516. [CrossRef] [PubMed] [Google Scholar]
  • Vu SV, Knibb W, Nguyen NTH, Vu IV, O'Connor W, Dove M, Nguyen NH. 2020. First breeding program of the Portuguese oyster Crassostrea angulata demonstrated significant selection response in traits of economic importance. Aquaculture 518: 734664. [CrossRef] [Google Scholar]
  • Wang X, Ma A, Huang Z, Sun Z, Cui W, Qu J, Yu H. 2019. Estimation of genetic parameters for upper thermal tolerances and growth-related traits in turbot Scophthalmus maximus. J Oceanol Limnol 37: 1736–1745. [CrossRef] [Google Scholar]
  • Wendling CC, Wegner KM. 2013. Relative contribution of reproductive investment, thermal stress and Vibrio infection to summer mortality phenomena in Pacific oysters. Aquaculture 412–413: 88–96. [Google Scholar]
  • Wetten M, Aasmundstad T, Kjøglum S, Storset A. 2007. Genetic analysis of resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 272: 111–117. [CrossRef] [Google Scholar]
  • Yang B, Zhai S, Li X, Tian J, Li Q, Shan H, Liu S. 2021. Identification of vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific oyster (Crassostrea gigas) in China. Aquaculture 535: 736363. [CrossRef] [Google Scholar]
  • Zhai S, Yang B, Zhang F, Li Q, Liu S. 2021. Estimation of genetic parameters for resistance to Vibrio alginolyticus infection in the Pacific oyster (Crassostrea gigas). Aquaculture 538: 736545. [CrossRef] [Google Scholar]
  • Zhang T, Kong J, Liu B, Wang Q, Cao B, Luan S, Wang W. 2014. Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot (Scophthalmus maximus Linnaeus). Acta Oceanol Sin 33: 106–110. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.