Open Access
Aquat. Living Resour.
Volume 36, 2023
Article Number 9
Number of page(s) 12
Published online 26 April 2023
  • Abdel-Raouf N, Ibraheem IBM. 2008. Antibiotic activity of two Anabaena species against four fish pathogenic Aeromonas species. Afr J Biotechnol 15: 2644–2648. [Google Scholar]
  • AOAC. 1999. Official methods of analysis of AOAC International. Maryland: Association of Official Analytical Chemists. [Google Scholar]
  • Attia AA, El-Saadawy HA, El-Belbasi HI, Abd El-Hameed SAA. 2021. Ameliorative effect of Azolla pinnata on imidacloprid induced hepatorenal toxicity, oxidative stress and immunosuppression in nile tilapia. J Anim Health Prod 9: 1–6. [Google Scholar]
  • Aubin J, Callier M, Rey‐Valette H, Mathé S, Wilfart A, Legendre M, Slembrouck J, Caruso D, Chia E, Masson G. Blancheton JP, Haryadi J, Prihadi TH, de Matos Casaca J, Tamassia STJ, Tocqueville A, Fontaine P. 2019. Implementing ecological intensification in fish farming: definition and principles from contrasting experiences. Rev Aquac 11: 149–167. [CrossRef] [Google Scholar]
  • Azab E, Soror AS. 2020. Physiological behavior of the aquatic plant Azolla sp. in response to organic and inorganic fertilizers. Plants 9: 924. [CrossRef] [PubMed] [Google Scholar]
  • Barakat M, Salem NIE, Khalifah AMA, Abd-El-Hadi HAM, Abass ME. 2015. Effect of Anabaena azollae on fish quality, nutritive components and its antibacterial action on Aeromonas hydrophila. Assiut Vet Med J 61: 1–7. [Google Scholar]
  • Barcellos LJG, Marqueze A, Trapp M, Quevedo RM, Ferreira D. 2010. The effects of fasting on cortisol, blood glucose and liver and muscle glycogen in adult jundiá Rhamdia quelen. Aquaculture 300: 231–236. [CrossRef] [Google Scholar]
  • Brouwer P, Schluepmann H, Nierop KG, Elderson J, Bijl PK, van der Meer I, de Visser W, Reichart G, Smeekens S, van der Werf A. 2018. Growing Azolla to produce sustainable protein feed: the effect of different species and CO2 concentrations on biomass productivity and chemical composition. J Sci Food Agric 98: 4759–4768. [CrossRef] [PubMed] [Google Scholar]
  • Carlozzi P, Padovani G. 2016. The aquatic fern Azolla as a natural plant factory for ammonia removal from fish-breeding fresh wastewater. Environ Sci Pollut Res 23: 8749–8755. [CrossRef] [PubMed] [Google Scholar]
  • Conroy DA, Conroy G, Peddie S. 2006. Basic atlas of Atlantic salmon (Salmo salar L) blood cells. Belfast, Patterson Peddie Consulting Ltd. [Google Scholar]
  • Cruz Y, Kijora C, Wedler E, Danier J, Schulz C. 2011. Fermentation properties and nutritional quality of selected aquatic macrophytes as alternative fish feed in rural areas of the Neotropics. Livest Res Rural Dev 23: 239. [Google Scholar]
  • Das M, Rahim FI, Hossain MA. 2018. Evaluation of fresh Azolla pinnata as a low-cost supplemental feed for thai silver barb Barbonymus gonionotus. Fishes 3: 15. [CrossRef] [Google Scholar]
  • Datta SN. 2011. Culture of Azolla and its efficacy in diet of Labeo rohita. Aquaculture 310: 376–379. [CrossRef] [Google Scholar]
  • Edwards P. 2015. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447: 2–14. [CrossRef] [Google Scholar]
  • Ellis AE. 2001. Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25: 827–839. [CrossRef] [PubMed] [Google Scholar]
  • El-Sayed AFM. 1992. Effects of substituting fish meal with Azolla pinnata in practical diets for fingerling and adult Nile tilapia, Oreochromis niloticus (L.). Aquac Res 23: 167–173. [CrossRef] [Google Scholar]
  • FAO. 2022. Fishery and aquaculture statistics. Global aquaculture production 1950–2020 (Release date: March 2022) (FishstatJ). Rome, FAO Fisheries and Aquaculture Department. [Google Scholar]
  • FAO. 2019. Cultured aquatic species information programme. Osphronemus goramy. Cultured Aquatic species information programme., 2019, Accessed date: 26 September 2021. [Google Scholar]
  • FAO. 2020. The state of world fisheries and aquaculture 2020. Rome, FAO Fisheries and Aquaculture Department. [Google Scholar]
  • Fasakin EA, Balogun AM, Fagbenro OA. 2001. Evaluation of sun-dried water fern, Azolla africana and duckweed, Spirodela polyrrhiza in practical diets for Nile tilapia, Oreochromis niloticus fingerlings. J Appl Aquac 11: 83–92. [CrossRef] [Google Scholar]
  • Fiogbé ED, Micha JC, Van Hove C. 2004. Use of a natural aquatic fern, Azolla microphylla, as the main component in food for the omnivorous-phytoplanktonophagous tilapia, Oreochromis niloticus L. J Appl Ichthyol 20: 517–520. [CrossRef] [Google Scholar]
  • Gangadhar B, Sridhar N, Saurabh S, Raghavendra CH, Hemaprasanth KP, Raghunath MR, Jayasankar P. 2015. Effect of Azolla-incorporated diets on the growth and survival of Labeo fimbriatus during fry-to-fingerling rearing. Cogent Food Agric 1: 1055539. [CrossRef] [Google Scholar]
  • Gangadhar B, Umalatha H, Hemaprasanth K. 2021. Apparent digestibility of dried azolla powder incorporated diets in rohu Labeo rohita (Hamilton, 1822). Indian J Fish 68: 153–156. [CrossRef] [Google Scholar]
  • Gong Y, Chen W, Han D, Zhu X, Yang Y, Jin J, Liu H, Xie S. 2016. Effects of food restriction on growth, body composition and gene expression related in regulation of lipid metabolism and food intake in grass carp. Aquaculture 469: 28–35. [Google Scholar]
  • Hall JA, Melendez LD, Jewell DE. 2013. Using gross energy improves metabolizable energy predictive equations for pet foods whereas undigested protein and fiber content predict stool quality. PLoS One 8: e54405. [CrossRef] [PubMed] [Google Scholar]
  • Hasan MR, Chakrabarti R. 2009. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. Rome, Food and Agriculture Organization of the United Nations. [Google Scholar]
  • He AY, Ning LJ, Chen LQ, Chen YL, Xing Q, Li JM, Qiao F, Li L., Zhang ML, Du, ZY. 2015. Systemic adaptation of lipid metabolism in response to low and high‐fat diet in Nile tilapia Oreochromis niloticus. Physiol Rep 3: e12485. [CrossRef] [PubMed] [Google Scholar]
  • Henriksson PJG, Heijungs R, Dao HM, Phan LT, Snoo GR, de Guinée JB. 2015. Product carbon footprints and their uncertainties in comparative decision contexts. PLoS One 10: e0121221. [CrossRef] [PubMed] [Google Scholar]
  • Henry-Silva GG, Camargo AFM, Pezzato LE. 2006. Apparent digestibility of aquatic macrophytes by Nile tilapia (Oreochromis niloticus) and water quality in relation to nutrients concentrations. Rev Bras Zootec 35: 641–647. [CrossRef] [Google Scholar]
  • Hundare SK, Pathan DI, Ranadive AB. 2018. Use of fermented Azolla in diet of tilapia fry (Oreochromis niloticus). IJBSM 9: 702–706. [CrossRef] [Google Scholar]
  • Knutsen HR, Johnsen IH, Keizer S, Sørensen M, Roques JAC, Hedén I, Sundell K, Hagen Ø. 2019. Fish welfare, fast muscle cellularity, fatty acid and body composition of juvenile spotted wolffish (Anarhichas minor) fed a combination of plant proteins and microalgae (Nannochloropsis oceanica). Aquaculture 506: 212–223. [CrossRef] [Google Scholar]
  • Kulkarni R, Pruthviraj CB. 2016. Blood creatinine and some enzyme levels in four species of Indian carp fishes were collected from a local aquatic body. Int Lett Nat Sci 60: 13–17. [Google Scholar]
  • Kunjiappan S, Bhattacharjee C, Chowdhury R. 2015. Invitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen − induced hepatocyte damage in Cyprinus carpio L. In Vitro Cell Dev Biol Anim 51: 630643. [CrossRef] [PubMed] [Google Scholar]
  • Leano EM, Guo JJ, Chang SL, Liao IC. 2003. Levamisole enhances non-specific immune response of cobia, Rachycentron canadum, and fingerlings. J Fish Soc Taiwan 30: 321–330. [Google Scholar]
  • Magouz FI, Dawood MA, Salem MF, Mohamed AA. 2020. The effects of fish feed supplemented with Azolla meal on the growth performance, digestive enzyme activity, and health condition of genetically-improved farmed tilapia (Oreochromis niloticus). Ann Anim Sci 20: 1029–1045. [CrossRef] [Google Scholar]
  • Milla S, Mathieu C, Wang N, Lambert S, Nadzialek S, Massart S, Henrotte E, Douxfils J, Mélard C, Mandiki SNM, Kestemont P. 2010. Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish Shellfish Immun 28: 931–941. [CrossRef] [Google Scholar]
  • Morgan J, Iwama G. 2011. Measurements of stressed states in the field. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (Eds.), Fish stress and health in aquaculture. Cambridge, Cambridge University Press, pp. 247–270. [Google Scholar]
  • Nayak N, Padhy RN. 2017. GC-MS analysis of bioactive compounds and host-toxicity studies of Azolla caroliniana symbiotic with the cyanobacterium Anabaena azollae. IJPER 51: S24– S33. [Google Scholar]
  • Nebo C, Gimbo RY, Kojima JT, Overturf K, Dal-Pai-Silva M, Portella MC. 2018. Depletion of stored nutrients during fasting in Nile tilapia (Oreochromis niloticus) juveniles. J Appl Aquacult 30: 157–173. [CrossRef] [Google Scholar]
  • Nekoubin H, Sudagar M. 2013. Effect of different types of plants (Lemna sp., Azolla filiculoides and Alfalfa and artificial diet (with two protein levels) on growth performance, survival rate, biochemical parameters and body composition of grass carp (Ctenopharyngodon idella). J Aquac Res Dev 4: 1000167. [Google Scholar]
  • Noor Nawaz AS, Syed J, Dileep N, Rakesh KN, Prashith Kekuda TR. 2014. Antioxidant activity of Azolla pinnata and Azolla rubra − a comparative study. Sch Acad J Biosci 2: 719–723. [Google Scholar]
  • Omnes MH, Le Goasduff J, Le Delliou H, Le Bayon N, Quazuguel P, Robin JH. 2017. Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.). Aquac Rep 6: 21–27. [CrossRef] [Google Scholar]
  • Phong LT, van Dam AA, Udo HMJ, Van Mensvoort MEF, Tri LQ, Steenstra FA, Van der Zijpp AJ. 2010. An agro-ecological evaluation of aquaculture integration into farming systems of the Mekong Delta. Agric Ecosyst Environ 138: 232–241. [CrossRef] [Google Scholar]
  • Pouil S, Samsudin R, Slembrouck J, Sihabuddin A, Sundari G, Khazaidan K, Kristanto AH, Pantjara B, Caruso D. 2020. Effects of shading, fertilization and snail grazing on the productivity of the water fern Azolla filiculoides for tropical freshwater aquaculture. Aquat Bot 160: 103150 [CrossRef] [Google Scholar]
  • Sala-Rabanal M, Sánchez J, Ibarz A, Fernández-Borràs J, Blasco J, Gallardo MA. 2003. Effects of low temperatures and fasting on haematology and plasma composition of gilthead seabream (Sparus aurata). Fish Physiol Biochem 29: 105–115. [CrossRef] [Google Scholar]
  • Saurabh S, Sahoo PK. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39: 223–239. [CrossRef] [Google Scholar]
  • Shemami MR, Tabarsa M, You S. 2018. Isolation and chemical characterization of a novel immunostimulating galactofucan from freshwater Azolla filiculoides. Int J Biol Macromol 118: 2082–2091. [CrossRef] [PubMed] [Google Scholar]
  • Slembrouck J, Samsudin R, Pantjara B, Sihabuddin A, Legendre M, Caruso D. 2018. Choosing floating macrophytes for ecological intensification of small-scale fish farming in tropical areas: a methodological approach. Aquat Living Resour 31: 30. [CrossRef] [EDP Sciences] [Google Scholar]
  • Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH., Folke C, Arrow KJ, Barrett S, Crépin A-S., Ehrlich PR, Gren Å, Kautsky N, Levin SA, Nyborg K, Österblom H, Polasky S, Scheffer M, Walker BH, Xepapadeas T, De Zeeuw A. (2014). Does aquaculture add resilience to the global food system? Proc Natl Acad Sci 111: 13257–13263. [CrossRef] [PubMed] [Google Scholar]
  • Urbinati EC, de Abreu JS, da Silva Camargo AC, Parra MAL. 2004. Loading and transport stress of juvenile matrinxã (Brycon cephalus), Characidae at various densities. Aquaculture 229: 389–400. [CrossRef] [Google Scholar]
  • Varga D, Hancz C, Molnár T, Romvári R, Szabó A. 2014. Preliminary results on the somatic and body compositional changes in juvenile common carp during long-term starvation. Acta Agr Kapos 18: 50–54. [Google Scholar]
  • Varga D, Hancz C, Molnár T, Szabó A. 2016. Alterations in serum metabolites and enzymes of juvenile common carp (Cyprinus carpio) during long-term starvation. Acta Agric Kapos 20: 36–39. [Google Scholar]
  • Vasudhevan I, James R, Pushparaj A, Asokan K. 2013. Effect of Azolla filiculoides on growth, colouration and leucocytes count in goldfish, Carassius auratus. Int J Plant Anim Environ Sci 3: 211–219. [Google Scholar]
  • Velásquez YCC. 2016. Study on the locally available aquatic macrophytes as fish feed for rural aquaculture purposes in South America. Berlin, Faculty of Agriculture and Horticulture at Humboldt-Universität zu Berlin. [Google Scholar]
  • Wagner GM. 1997. Azolla: a review of its biology and utilization. Bot Rev 63: 1–26. [CrossRef] [Google Scholar]
  • Xu C, Li E, Suo Y, Su Y, Lu M, Zhao Q, Qin JG, Chen L. 2018. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia Oreochromis niloticus. to long-term hypersaline stress. Fish Shellfish Immun 76: 48–57. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.