Open Access
Aquat. Living Resour.
Volume 34, 2021
Article Number 22
Number of page(s) 10
Published online 21 September 2021
  • Akaike H. 1987. Factor analysis and AIC. In: Selected Papers of Hirotugu Akaike. Springer, pp. 371–386. [Google Scholar]
  • Balk H, Lindem T. 2012. Sonar4 and Sonar5-Pro, post processing systems. Operator manual version 6.0.1. Oslo, Norway, Balk and Lindem. [Google Scholar]
  • Becker A, Suthers IM. 2014. Predator driven diel variation in abundance and behaviour of fish in deep and shallow habitats of an estuary. Estuar Coast Shelf Sci 144: 82–88. [Google Scholar]
  • Belcher E, Matsuyama B, Trimble G. 2001. Object Identification with Acoustic Lenses. Presented at the MTS/IEEE oceans, session 1, Honolulu, Hawaï, p. 6 pp. [Google Scholar]
  • Bennett MA, Becker A, Gaston T, Taylor MD. 2020. Connectivity of large-bodied fish with a recovering estuarine tidal marsh, revealed using an imaging sonar. Estuar Coasts 1–9. [Google Scholar]
  • Boswell KM, Wilson MP, Cowan JH. 2008. A Semiautomated Approach to Estimating Fish Size, Abundance, and Behavior from Dual-Frequency Identification Sonar (DIDSON) Data. North Am J Fish Manag 28: 799–807. [Google Scholar]
  • Boulêtreau S, Carry L, Meyer E, Filloux D, Menchi O, Mataix V, Santoul F. 2020. High predation of native sea lamprey during spawning migration. Sci Rep 10. [PubMed] [Google Scholar]
  • Briand C, Sauvaget B, Eriau G. 2016. Suivi de la dévalaison d'anguilles argentées en 2014–2015 (troisième année) sur la Vilaine à l'aide d'un DIDSON [Technical report]. EPTB Vilaine. [Google Scholar]
  • Burwen DL, Fleischman SJ, Miller JD. 2007. Evaluation of a Dual-Frequency Imaging Sonar for detecting and estimating the size of migrating salmon (Fisheries Data Series No. 07–44). 33 Raspberry Road, Anchorage, Alaska 99518-1565, Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries. [Google Scholar]
  • Burwen DL, Fleischman SJ, Miller JD. 2010. Accuracy and precision of salmon length estimates taken from DIDSON sonar images. Trans Am Fish Soc 139: 1306–1314. [Google Scholar]
  • Colbo K, Ross T, Brown C, Weber T. 2014. A review of oceanographic applications of water column data from multibeam echosounders. Estuar Coast Shelf Sci 145: 41–56. [Google Scholar]
  • Cook D, Middlemiss K, Jaksons P, Davison W, Jerrett A. 2019. Validation of fish length estimations from a high frequency multi-beam sonar (ARIS) and its utilisation as a field-based measurement technique. Fish Res 218: 59–68. [Google Scholar]
  • Cronkite G, Mulligan T, Holmes J, Enzenhofer H. 2007. Categorising salmon migration behaviour using characteristics of split-beam acoustic data. Aquat Liv Resour 20: 205–212. [Google Scholar]
  • Cronkite GMW, Enzenhofer HJ, Ridley T, Holmes J, Lilja J, Benner K. 2006. Use of High-Frequency Imaging Sonar to estimate adult Sockeye Salmon escapement in the Horsefly River, British Columbia (Canadian Technical Report of Fisheries and Aquatic Sciences No. 2647). Pacific Biological Station, Nanaimo, British Columbia, V9T 6N7, Fisheries and Oceans Canada, Science Branch, Pacific Region. [Google Scholar]
  • Crossman JA, Martel G, Johnson PN, Bray K. 2011. The use of Dual-frequency IDentification SONar (DIDSON) to document white sturgeon activity in the Columbia River, Canada. J Appl Ichthyol 27: 53–57. [Google Scholar]
  • Cunjak RA. 1996. Winter habitat of selected stream fishes and potential impacts from land-use activity. Can J Fish Aquat Sci 53: 267–282. [Google Scholar]
  • Daroux A, Martignac F, Nevoux M, Baglinière JL, Ombredane D, Guillard J. 2019. Manual fish length measurement accuracy for adult river fish using an acoustic camera (DIDSON). J Fish Biol 95: 480–489. [PubMed] [Google Scholar]
  • Davies RN, Griffith J. 2011. Monitoring adult Sea Lamprey (Petromyzon marinus) migration using a DIDSON imaging sonar on the River Tywi 2009/10 (No. Ref No − FAT/11/05). Cardiff, Wales: Environment Agency. [Google Scholar]
  • Eggleston MR, Milne SW, Ramsay M, Kowalski KP. 2020. Improved fish counting method accurately quantifies high-density fish movement in dual-frequency identification sonar data files from a coastal wetland environment. North Am J Fish Manag 40: 883–892. [Google Scholar]
  • Enzenhofer HJ, Olsen N, Mulligan TJ. 1998. Fixed-location riverine hydroacoustics as a method of enumerating migrating adult Pacific salmon: comparison of split-beam acoustics vs. visual counting. Aquat Liv Resour 11: 61–74. [Google Scholar]
  • Grote AB, Bailey MM, Zydlewski JD, Hightower JE. 2014. Multibeam sonar (DIDSON) assessment of American shad (Alosa sapidissima) approaching a hydroelectric dam. Can J Fish Aquat Sci 71: 545–558. [Google Scholar]
  • Guillard J, Perga ME, Colon M, Angeli N. 2006. Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish Manag Ecol 13: 319–327. [Google Scholar]
  • Helminen J, Linnansaari T. 2021. Object and behavior differentiation for improved automated counts of migrating river fish using imaging sonar data. Fish Res 237: 105883. [Google Scholar]
  • Hightower JE, Magowan KJ, Brown LM, Fox DA. 2013. Reliability of fish size estimates obtained from multibeam imaging sonar. J Fish Wildlife Manag 4: 86–96. [Google Scholar]
  • Holmes J, Cronkite G, Enzenhofer H, Mulligan T. 2006. Accuracy and precision of fish-count data from a “dual-frequency identification sonar” (DIDSON) imaging system. ICES J Mar Sci 63: 543–555. [Google Scholar]
  • Horne JK. 2000. Acoustic approaches to remote species identification: a review. Fish Oceanogr 9: 356–371. [Google Scholar]
  • Jones ID, Winfield IJ, Carse F. 2008. Assessment of long‐term changes in habitat availability for Arctic charr (Salvelinus alpinus) in a temperate lake using oxygen profiles and hydroacoustic surveys. Freshw Biol 53: 393–402. [Google Scholar]
  • Kang MH. 2011. Semiautomated analysis of data from an imaging sonar for fish counting, sizing, and tracking in a post-processing application. Fish Aquat Sci 14: 218–225. [Google Scholar]
  • Kubecka J, Wittingerova M. 1998. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fish Res 35: 99–106. [Google Scholar]
  • Kupilik MJ, Petersen T. 2014. Acoustic tracking of migrating salmon. J Acoust Soc Am 136: 1736–1743. [PubMed] [Google Scholar]
  • Langkau MC, Balk H, Schmidt MB, Borcherding J. 2012. Can acoustic shadows identify fish species? A novel application of imaging sonar data. Fish Manag Ecol 19: 313–322. [Google Scholar]
  • Lenihan ES, McCarthy TK, Lawton C. 2019. Use of an acoustic camera to monitor seaward migrating silver-phase eels (Anguilla anguilla) in a regulated river. Ecohydrol Hydrobiol 19: 289–295. [Google Scholar]
  • Lenihan ES, McCarthy TK, Lawton C. 2020. Assessment of silver eel (Anguilla anguilla) route selection at a water-regulating weir using an acoustic camera. Mar Freshw Res. [Google Scholar]
  • Lilja J, Romakkaniemi A, Stridsman S, Karlsson L. 2010. Monitoring of the 2009 salmon spawning run in River Tornionjoki/Torneälven using Dual frequency IDentification SONar (DIDSON). Finnish Game and Fisheries Research Institute, Finland; Swedish Board of Fisheries. [Google Scholar]
  • MacLennan DN, Simmonds EJ. 2013. Fisheries acoustics. Springer Science & Business Media. [Google Scholar]
  • Martignac F. 2016. Utilisation de deux outils hydroacoustiques pour analyser la dynamique migratoire du saumon atlantique (Salmo salar L.) dans deux fleuves de la baie du Mont-Saint-Michel. Rennes, Agrocampus Ouest. [Google Scholar]
  • Martignac F, Baglinière JL, Thieulle L, Ombredane D, Guillard J. 2013. Influences of a dam on Atlantic salmon (Salmo salar) upstream migration in the Couesnon River (Mont Saint Michel Bay) using hydroacoustics. Estuar Coast Shelf Sci 134: 181–187. [Google Scholar]
  • Martignac F, Daroux A, Bagliniere J-L, Ombredane D, Guillard J. 2015. The use of acoustic cameras in shallow waters: new hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish Fish 16: 486–510. [Google Scholar]
  • Maxwell SL, Buck GB, Faulkner AV. 2019. Using acoustic telemetry to expand sonar escapement indices of Chinook salmon to in-river abundance estimates. Fish Res 220: 105347. [Google Scholar]
  • McCann EL, Johnson NS, Hrodey PJ, Pangle KL. 2018. Characterization of sea lamprey stream entry using dual-frequency identification sonar. Trans Am Fish Soc 147: 514–524. [Google Scholar]
  • Mouget A, Goulon C, Axenrot T, Balk H, Lebourges‐Dhaussy A, Godlewska M, Guillard J. 2019. Including 38 kHz in the standardization protocol for hydroacoustic fish surveys in temperate lakes. Remote Sens Ecol Conserv 5: 332–345. [Google Scholar]
  • Moursund R. 2003. A fisheries application of a dual-frequency identification sonar acoustic camera. ICES J Mar Sci 60: 678–683. [Google Scholar]
  • Pavlov DS, Borisenko ES, Mochek AD, Degtev EI. 2011. Hydroacoustic study of Salmo Salar migration in the Shuya River (Onega Lake Basin). J Ichthyol 51: 646–651. [Google Scholar]
  • Pavlov DS, Borisenko ES, Pashin VM. 2009. Investigations of spawning migration and assessment of abundance of the Kamchatka steelhead (Parasalmo mykiss) from the Utkholok River by means of DIDSON dual-frequency identification sonar. J Ichthyol 49: 1042–1064. [Google Scholar]
  • Petreman IC, Jones NE, Milne SW. 2014. Observer bias and subsampling efficiencies for estimating the number of migrating fish in rivers using Dual-frequency IDentification SONar (DIDSON). Fish Res 155: 160–167. [Google Scholar]
  • Poulain T, Argillier C, Gevrey M, Guillard J. 2010. Acoustic lakebed classification using sonar5-pro. In: Journées Internationales de Limnologie. p. 1. [Google Scholar]
  • Rakowitz G, Tušer M, Říha M, Jůza T, Balk H, Kubečka J. 2012. Use of high-frequency imaging sonar (DIDSON) to observe fish behaviour towards a surface trawl. Fish Res 123–124: 37–48. [Google Scholar]
  • Romakkaniemi A, Lilja J, Nykänen M, Marjomäki TJ, Jurvelius J. 2000. Spawning run of Atlantic Salmon (Salmo salar) in the River Tornionjoki monitored by horizontal split-beam echosounding. Aquat Liv Resour 13: 349–354. [Google Scholar]
  • Simmonds EJ, MacLennan DN. 2005. Fisheries acoustics: theory and practice, Fish and aquatic resources series. 2nd ed, Oxford; Ames, Iowa, USA: Blackwell Science. [Google Scholar]
  • Trenkel V, Ressler P, Jech M, Giannoulaki M, Taylor C. 2011. Underwater acoustics for ecosystem-based management: state of the science and proposals for ecosystem indicators. Mar Ecol Progr Ser 442: 285–301. [Google Scholar]
  • Tušer M, Frouzová J, Balk H, Muška M, Mrkvička T, Kubečka J. 2014. Evaluation of potential bias in observing fish with a DIDSON acoustic camera. Fish Res 155: 114–121. [Google Scholar]
  • van Keeken OA, van Hal R, Volken Winter H, Tulp I, Griffioen AB. 2020. Behavioural responses of eel (Anguilla anguilla) approaching a large pumping station with trash rack using an acoustic camera (DIDSON). Fish Manag Ecol 27: 464–471. [Google Scholar]
  • Wilcoxon F. 1945. Individual Comparisons by Ranking Methods. Biometr Bull 1: 80–83. [Google Scholar]
  • Zhang P, Qiao Y, Jin Y, Lek S, Yan T, He Z, Chang J, Cai L. 2020. Upstream migration of fishes downstream of an under-construction hydroelectric dam and implications for the operation of fish passage facilities. Glob Ecol Conserv 23: e01143. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.