Free Access
Aquat. Living Resour.
Volume 34, 2021
Article Number 23
Number of page(s) 16
Published online 15 October 2021
  • Andre C, Lindegarth M, Jonsson PR, Sundberg P. 1999. Species identification of bivalve larvae using random amplified polymorphic DNA (RAPD): differentiation between Cerastoderma edule and C. lamarcki. J Mar Biol Assoc Uk 79: 563–565. [CrossRef] [Google Scholar]
  • Anfossi L, Di Nardo F, Cavalera S, Giovannoli C, Baggiani C. 2018. Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors 9: 1–14. [CrossRef] [Google Scholar]
  • Aronson J, Alexander S. 2013. Ecosystem restoration is now a global priority: time to roll up our sleeves. Restor Ecol 21: 293–296. [CrossRef] [Google Scholar]
  • Bakheit MA, Torra D, Palomino LA, Thekisoe OM, Mbati PA, Ongerth J, Karanis P. 2008. Sensitive and specific detection of Cryptosporidium species in PCR-negative samples by loop-mediated isothermal DNA amplification and confirmation of generated LAMP products by sequencing. Vet Parasitol 158: 11–22. [CrossRef] [PubMed] [Google Scholar]
  • Baltrušis P, Halvarsson P, Hoglund J. 2018. Exploring benzimidazole resistance in Haemonchus contortus by next generation sequencing and droplet digital PCR. Int J Parasitol Drugs Drug Resist 8: 411–419. [CrossRef] [PubMed] [Google Scholar]
  • Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, Defeo O, Edgar GJ, Hancock B, Kay MC, Lenihan HS, Luckenbach MW, Toropova CL, Zhang G, Guo X. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. BioScience 61: 107–116. [CrossRef] [Google Scholar]
  • Blažková M, Koets M, Rauch P, van Amerongen A. 2009. Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. Eur Food Res Technol 229: 867–874. [CrossRef] [Google Scholar]
  • Boudry P, Heurtebise S, Collet B, Cornette F, Gerard A. 1998. Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J Exp Mar Biol Ecol 226: 279–291. [CrossRef] [Google Scholar]
  • Brunauer A, Verboket RD, Kainz DM, von Stetten F, Fruh SM. 2021. Rapid detection of pathogens in wound exudate via nucleic acid lateral flow immunoassay. Biosensors 11: 1–16. [Google Scholar]
  • Bundesamt für Naturschutz. 2020. Bekanntmachung des Managementplans für das Naturschutzgebiet “Borkum Riffgrund”. In: Verbraucherschutz B.d.J.u.f. (Ed.) BAnz AT 13.05.2020 B9. Berlin. Bundesanzeiger. [Google Scholar]
  • Buscher P. 2011. Nucleic acid lateral flow tests for molecular diagnosis: an update. Expert Opin Med Diagn 5: 85–89. [CrossRef] [PubMed] [Google Scholar]
  • Couton M, Comtet T, Le Cam S, Corre E, Viard F. 2019. Metabarcoding on planktonic larval stages: an efficient approach for detecting and investigating life cycle dynamics of benthic aliens. Manage Biol Invas 10: 657–689. [CrossRef] [Google Scholar]
  • Cronin MA, Palmisciano DA, Vyse ER, Cameron DG. 1991. Mitochondrial DNA in wildlife forensic science: Species identification of tissues. Wildlife Soc B 19: 94–105. [Google Scholar]
  • Danic-Tchaleu G, Heurtebise S, Morga B, Lapegue S. 2011. Complete mitochondrial DNA sequence of the European flat oyster Ostrea edulis confirms Ostreidae classification. BMC Res Notes 4: 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Fariñas-Franco JM, Pearce B, Mair JM, Harries DB, MacPherson RC, Porter JS, Reimer PJ, Sanderson WG. 2018. Missing native oyster (Ostrea edulis L.) beds in a European Marine Protected Area: Should there be widespread restorative management? Biol Conserv 221: 293–311. [Google Scholar]
  • Fitzsimons JA, Branigan S, Gillies CL, Brumbaugh RD, Cheng J, DeAngelis BM, Geselbracht L, Hancock B, Jeffs A, McDonald T, McLeod IM, Pogoda B, Theuerkauf SJ, Thomas M, Westby S, zu Ermgassen PSE. 2020. Restoring shellfish reefs: global guidelines for practitioners and scientists. Convers Sci Pract 2: 1–11. [Google Scholar]
  • Garland ED, Zimmer CA. 2002. Techniques for the identification of bivalve larvae. Mar Ecol Prog Ser 225: 299–310. [CrossRef] [Google Scholar]
  • Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH. 2010. The NCBI BioSystems database. Nucleic Acids Res 38: 492–496. [Google Scholar]
  • Hare MP, Palumbi SR, Butman CA. 2000. Single-step species identification of bivalve larvae using multiplex polymerase chain reaction. Mar Biol 137: 953–961. [CrossRef] [Google Scholar]
  • Holman LE, de Bruyn M, Creer S, Carvalho G, Robidart J, Rius M. 2019. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci Rep 9: 1–10. [PubMed] [Google Scholar]
  • Hosoi M, Hosoi-Tanabe S, Sawada H, Ueno M, Toyohara H, Hayashi I. 2004. Sequence and polymerase chain reaction-restriction fragment length polymorphism analysis of the large subunit rRNA gene of bivalve: Simple and widely applicable technique for multiple species identification of bivalve larva. Fisheries Sci 70: 629–637. [CrossRef] [Google Scholar]
  • Jackson FL, Buceta Miller JL. 2009. Assessment of construction or placement of artificial reefs. London, OSPAR Commission. Biodiversity Series. [Google Scholar]
  • Jiang L, Ching P, Chao CC, Dumler JS, Ching WM. 2020. Development of a sensitive and rapid recombinase polymerase amplification assay for detection of Anaplasma phagocytophilum. J Clin Microbiol 58: 1–9. [CrossRef] [Google Scholar]
  • Jung SW, Kim HJ, Park JS, Lee TK, Shin K, Jeong SY, Hwang JY, Yoo JW. 2018. Planktonic bivalve larvae identification and quantification in Gomso Bay, South Korea, using next-generation sequencing analysis and microscopic observations. Aquaculture 490: 297–302. [CrossRef] [Google Scholar]
  • Kim S-H, Je E-Y, Park D-W. 1999. Crassostrea gigas mitochondrion, complete genomeNC_001276.1. NCBI GenBank. [Google Scholar]
  • Kwon H-S, Park H-C, Lee K, An S, Oh Y-L, Ahn E-R, Jung JY, Lim S-K. 2016. Performance of MiniPCRTMmini8, a portable thermal cycler. Anal Sci Technol 29: 79–84. [CrossRef] [Google Scholar]
  • Lam K, Morton B. 2004. The oysters of Hong Kong (Bivalvia: Ostreidae and Gryphaeidae). Raffles B Zool 52: 11–28. [Google Scholar]
  • Larrain MA, Gonzalez P, Perez C, Araneda C. 2019. Comparison between single and multi-locus approaches for specimen identification in Mytilus mussels. Sci Rep 9: 1–13. [PubMed] [Google Scholar]
  • Lasota R, Pilczynska J, Williams ST, Wolowicz M. 2013. Fast and easy method for total DNA extraction and gene amplification from larvae, spat and adult mussels Mytilus trossulus from the Baltic Sea. Oceanol Hydrobiol St 42: 486–489. [CrossRef] [Google Scholar]
  • Le Goff-Vitry MC, Chipman AD, Comtet T. 2007. In situ hybridization on whole larvae: a novel method for monitoring bivalve larvae. Mar Ecol Prog Ser 343: 161–172. [CrossRef] [Google Scholar]
  • Longo MC, Berninger MS, Hartley JL. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93: 125–128. [CrossRef] [PubMed] [Google Scholar]
  • Mens PF, Moers AP, de Bes LM, Flint J, Sak JR, Keereecharoen L, van Overmeir C, Verweij JJ, Hallett RL, Wihokhoen B, Proux S, Schallig HD, van Amerongen A. 2012. Development, validation and evaluation of a rapid PCR-nucleic acid lateral flow immuno-assay for the detection of Plasmodium and the differentiation between Plasmodium falciparum and Plasmodium vivax. Malar J 11: 279. [CrossRef] [PubMed] [Google Scholar]
  • Mens PF, van Amerongen A, Sawa P, Kager PA, Schallig HD. 2008. Molecular diagnosis of malaria in the field: development of a novel 1-step nucleic acid lateral flow immunoassay for the detection of all 4 human Plasmodium spp. and its evaluation in Mbita, Kenya. Diagn Microbiol Infect Dis 61: 421–427. [CrossRef] [PubMed] [Google Scholar]
  • Mortz M, Levivier A, Lartillot N, Dufresne F, Blier PU. 2021. Long-Lived Species of Bivalves Exhibit Low MT-DNA Substitution Rates. Front Mol Biosci 8: 1–12. [CrossRef] [Google Scholar]
  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28: 1–7. [Google Scholar]
  • O'Farrell B. 2009. Evolution in Lateral Flow–Based Immunoassay Systems. In: Wong R., Tse H. (Eds.), Lateral Flow Immunoassay. Totowa, NJ: Humana Press, pp. 33. [Google Scholar]
  • Pecchia S, Da Lio D. 2018. Development of a rapid PCR-Nucleic Acid Lateral Flow Immunoassay (PCR-NALFIA) based on rDNA IGS sequence analysis for the detection of Macrophomina phaseolina in soil. J Microbiol Methods 151: 118–128. [CrossRef] [PubMed] [Google Scholar]
  • Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using recombination proteins. PLOS Biol 4: 1–7. [Google Scholar]
  • Pogoda B. 2019. Current Status of European Oyster Decline and Restoration in Germany. Humanities 8: 1–12. [CrossRef] [Google Scholar]
  • Pogoda B, Boudry P, Bromley C, Cameron TC, Colsoul B, Donnan D, Hancock B, Hugh-Jones T, Preston J, Sanderson WG, Sas H, Brown J, Bonacic K, von Nordheim H, zu Ermgassen PSE. 2020. NORA moving forward: Developing an oyster restoration network in Europe to support the Berlin Oyster Recommendation. Aqua Conser Mar Fresh Ecol 30: 2031–2037. [CrossRef] [Google Scholar]
  • Pogoda B, Brown J, Hancock B, Preston J, Pouvreau S, Kamermans P, Sanderson W, von Nordheim H. 2019. The Native Oyster Restoration Alliance (NORA) and the Berlin Oyster Recommendation: bringing back a key ecosystem engineer by developing and supporting best practice in Europe. Aquat Living Resour 32: 1–9. [Google Scholar]
  • Posthuma-Trumpie GA, Korf J, van Amerongen A. 2008. Development of a competitive lateral flow immunoassay for progesterone: influence of coating conjugates and buffer components. Anal Bioanal Chem 392: 1215–1223. [CrossRef] [PubMed] [Google Scholar]
  • Posthuma-Trumpie GA, Korf J, van Amerongen A. 2009. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393: 569–582. [CrossRef] [PubMed] [Google Scholar]
  • Quinteiro J, Pérez-Diéguez L, Sánchez A, Perez-Martín RI, Sotelo CG, Rey-Méndez M. 2011. Quantification of Manila Clam Ruditapes philippinarum (Adams & Reeve, 1850) Larvae Based on SYBR Green Real-Time Polymerase Chain Reaction. J Shell Res 30: 791–796. [CrossRef] [Google Scholar]
  • Sanchez A, Quinteiro J, Rey-Mendez M, Perez-Martin RI, Sotelo CG. 2014. Identification and quantification of two species of oyster larvae using real-time PCR. Aquat Living Resour 27: 135–145. [CrossRef] [EDP Sciences] [Google Scholar]
  • Seidel C, Peters S, Eschbach E, Fessler AT, Oberheitmann B, Schwarz S. 2017. Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. Vet Microbiol 200: 101–106. [CrossRef] [PubMed] [Google Scholar]
  • Sekino M. 2009. In search of the Kumamoto oyster Crassostrea sikamea (Amemiya, 1928) based on molecular markers: is the natural resource at stake? Fish Sci 75: 819–831. [CrossRef] [Google Scholar]
  • Tsai CH, Chen J, Szostak JW. 2007. Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proc Natl Acad Sci USA 104: 14598–14603. [CrossRef] [PubMed] [Google Scholar]
  • UN General Assembly. 2019. United Nations Decade on Ecosystem Restoration (2021-2030). U. N. Doc. A/RES/73/284. 73rd Sess., pp. 9. [Google Scholar]
  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res 40: 1–12. [Google Scholar]
  • Vincent M, Xu Y, Kong H. 2004. Helicase-dependent isothermal DNA amplification. EMBO Rep 5: 795–800. [CrossRef] [PubMed] [Google Scholar]
  • Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. 1992. Strand displacement amplification − an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20: 1691–1696. [CrossRef] [PubMed] [Google Scholar]
  • Wang C, Zhang L, Shen X. 2013. Development of a nucleic acid lateral flow strip for detection of hepatitis C virus (HCV) core antigen. Nuclic Acid 32: 59–68. [CrossRef] [PubMed] [Google Scholar]
  • Wang S, Bao Z, Zhang L, Li N, Zhan A, Guo W, Wang X, Hu J. 2006. A new strategy for species identification of planktonic larvae: PCR-RFLP analysis of the internal transcribed spacer region of ribosomal DNA detected by agarose gel electrophoresis or DHPLC. J Plank Res 28: 375–384. [CrossRef] [Google Scholar]
  • Watts MR, Kim R, Ahuja V, Robertson GJ, Sultana Y, Wehrhahn MC, Bradbury RS, Gilbert GL, Lee R. 2019. Comparison of loop-mediated isothermal amplification and real-time PCR assays for detection of strongyloides larvae in different specimen matrices. J Clin Microbiol 57: 1–9. [Google Scholar]
  • Westby S, Geselbracht L, Pogoda B. 2019. Shellfish reef restoration in practice. In: Fitzsimons J. et al. (Eds.), Restoration Guidelines for Shellfish Reefs. Arlington VA, USA: The Nature Conservancy, pp. 36–48. [Google Scholar]
  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Zieritz A, Gum B, Kuehn R, Geist J. 2012. Identifying freshwater mussels (Unionoida) and parasitic glochidia larvae from host fish gills: a molecular key to the North and Central European species. Ecol Evol 2: 740–750. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.