Issue
Aquat. Living Resour.
Volume 34, 2021
Special Issue - Ecological intensification: A new paragon for sustainable aquaculture
Article Number 5
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2021002
Published online 23 March 2021
  • Aliah R. 2012. Modelling of integrated multi trophic aquaculture on the north coast of Karawang, west Java. J Environ Eng 13: 47–52. [Google Scholar]
  • APHA. Standard Methods for the Examination of Water and Waste Water, 22nd edn, American Public Health Association, Washington DC, 2012, p. 1496. [Google Scholar]
  • Bartoli M, Nizzoli D, Naldi M, Vezzulli L, Porrello S, Lenzi M, Viaroli P. 2005. Inorganic nitrogen control in wastewater treatment ponds from a fish farm (Orbetello, Italy): denitrification versus Ulva uptake. Mar Pollut Bull 50: 1386–1397 . [Google Scholar]
  • Boyd CE, McNevin AA. 2015. Aquaculture, Resource Use and the Environment, Wiley Blackwell, Canada. [Google Scholar]
  • Busacker GP, Adelman TR, Goolish EM. Growth, in: C.B. Schreck, P.B. Moyle (Eds.), Method for Fish Biology, American Fisheries Society, Bathesda, Maryl, 1990, pp. 363–377 . [Google Scholar]
  • Buschmann A, Troell M, Kautsky N. 2001. Integrated algal farming: a review. Cah Biol Mar 42: 83–90 . [Google Scholar]
  • Cahill PL, Hurd LC, Lokman M. 2010. Keeping the water clean − Seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture. Aquaculture 306: 153–159 . [Google Scholar]
  • Carlsson MS, Glud RN, Petersen JK. 2010. Degradation of mussel (Mytius edulis) fecal pellet released from hanging long-line upon sinking and after settling at the sediment. Can J Fish Aquat Sci 67: 1376–1387 . [Google Scholar]
  • Carton-Kawagoshi RJ, Elle BJ, Corre Jr. V, Satoh S, Notoya M, Fujita D. 2014. Low water exchange Gracilariopsis bailiniae, Zhang & Xia, culture in intensive milkfish culture effluents: effects of seaweed density on seaweed production and effluent treatment. Aquacult Int 22: 573–584 . [Google Scholar]
  • Chaiyakum K, Tanwilai D. Experiment on using of Green Mussel, Mytilus sp. and Seaweed, Gracilariafisheri for Biological Wastewater Treatment from Intensive Culture of Tiger Shrimp Ponds, National Institute of Coastal Aquaculture, Songkhla, Thailand. Technical paper 6, 1992. [Google Scholar]
  • Christensen PB, Glud RN, Dalsgaard T, Gillispie P. 2003. Impacts of longline mussel farming on oxygen and nitrogen dynamics and biological communities of coastal sediments. Aquaculture 218: 567–588 . [Google Scholar]
  • Filgueira R, Strople LC, Sttohmeimer T, Rastrick S, Strand O. 2019. Mussels or tunicates: that is the question. Evaluating efficient and sustainable resource use by low-trophic species in aquaculture settings. J Clean Prod 231: 132–143. [Google Scholar]
  • Golez NV, Mallare MT, Guanzon N, Hurtado AQ, Jaspe J. A study on the integrated biological processes for treating intensive shrimp effluents. Sediment Quality Assessment Program, Chicago, IL, 16–18 October 2002. [Google Scholar]
  • Haamer J. 1996. Improving water quality in a eutrophied fjord system with mussel farming. Ambio 25: 356–362. [Google Scholar]
  • Huo YZ, Wu HL, Chai ZY, Xu SN, Han F, Li D, He PM. 2012. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 326–329: 99–105 . [Google Scholar]
  • Irisarri J. Reiriz MJF, Robinson SMC, Cranford PJ, Labarta U. 2013. Absorption efficiency of mussels Mytilus edulis and Mytilus galloprovincialis cultured under Integrated Multi-Trophic Aquaculture conditions in the Bay of Fundy (Canada) and Ría Ares-Betanzos (Spain). Aquaculture 381–391: 182–192 . [Google Scholar]
  • Jones AB, Dennison WC, Pretson NP. 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture 193: 155–178 . [Google Scholar]
  • Komarawidjaja W, Kurniawan DA. 2008. Filtration rate of seaweed (Gracilariasp) to the concentration of orthophosphate (P2O5). J Environ Eng 9: 180–183. [Google Scholar]
  • Kutty MN. 1987. Site Selection for Aquaculture, Chemical features of water. African Regional Aquaculture Centre, Port Harcourt, Nigeria. [Google Scholar]
  • Marinho-Soriano ESO, Nunes MAA, Carneiro, Pereira DC. 2009. Nutrients' removal from aquaculture wastewater using the Macroalgae Gracilaria birdiae . Biomass Bioenerg 33: 327–331. [Google Scholar]
  • Masilamani JG, Azariah J, Nandakumar K, Jesudoss KS et al. 2001. Excretory products of green mussel (Perna viridis L.) and their implications on power plant operation. Turk J Zool 25: 117–125 . [Google Scholar]
  • Ministry of Marine Affairs and Fisheries (MMAF) of Republic Indonesia. 2013. Government Regulation No. 75. about Rearing tiger shrimp (Penaeus monodon) and vannamei shrimp (Litopenaeus vannamei). [Google Scholar]
  • Msuya FE, Neori A. 2002. Ulva reticulata and Gracilariacrassa: macroalgae that can biofilter effluent from tidal fishpons in Tanzania. Western Indian Ocean. J Mar Sci 1: 117–126 . [Google Scholar]
  • National Standarization Agency of Indonesia. 2004. SNI: 06-6989.22. Water and water waste: Chapter 22. Organic matter test using spectrophotometry by titration of permanganate. [Google Scholar]
  • National Standarization Agency of Indonesia. 2011. SNI: 6989.79. Water and water waste: Chapter 31. Nitrate test using spectrophotometry by cadmium reduction method. [Google Scholar]
  • Nelson S, Glenn E, Moore D, Walsh T, Fitzsimmons K. 2001. Use of an edible red seaweed to improve effluent from shrimp farms. Environmental Research Laboratory, Univ. Arizona. Tucson. AZ. [Google Scholar]
  • Neori A, Chopin T, Troel M, Buschmann AH et al. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231: 361–391 . [Google Scholar]
  • Pandjara B, Hendrajat EA, Surwoyo HS. 2010. Utilization of biofilter in tiger shrimp culture in abandon pond. Prosiding Forum Inovation. Aquac Technol 221–131 . [Google Scholar]
  • Pena-Rodríguez A, Magallón-Barajas FJ, Cruz-Suárez LE, Elizondo González R, Moll B. 2017. Effects of stocking density on the performance of brown shrimp Farfantepenaeuscaliforniensis cocultured with the green seaweed Ulva clathrata. Aquac Res 48: 2803–2811 . [Google Scholar]
  • Porrello S, Mauro L, Persia E, Tomassetti P, Finoia MG. 2003. Reduction of aquaculture wastewater eutrophication by phytotreatment pond systems: dissolved and particulate nitrogen and phosphorous. Aquaculture 219: 515–529 . [Google Scholar]
  • Rabiei R, Phang S, Yeong H, Lim P, Ajdari D, Zarshenas G, Sohrabipour J, 2014. Bioremediation efficiency and biochemical composition of Ulva reticulata Forsskål (Chlorophyta) cultivated in shrimp (Penaeus monodon) hatchery effluent. Iran J Fish Sci 13: 621–639. [Google Scholar]
  • Rahmaningsih S. 2012. Technology using seaweed as a natural biofilter in brackish-water to reduce the disease attack in Litopenaeus vannamei . Fish Technol Oceanogr 2: 11–16 . [Google Scholar]
  • Rajesh KV, Mohamed KS, Krippa V. 2001. Influence of algal cell concentration, salinity and body size on the filtration and ingestion rate of cultivable India bivalves. Indian J Mar Sci 30: 87–92 . [Google Scholar]
  • Statistic of Central Java. 2020. https://jateng.bps.go.id/statictable/2020/07/22/1953/produksi-dan-nilai-produksi-perikanan-budidaya-menurut-kabupaten-kota-dan-komoditas-utama-di-provinsi-jawa-tengah-2018x.html [Google Scholar]
  • SNI (Standard National Indonesia), 2004. Water and Wastewater − Methodology for calculating permanganate titration. National Standarization Department. Indonesia. [Google Scholar]
  • Susilowati T, Hutabarat J, Anggoro S, Zainuri M. 2014. The improvement of the survival, growth of naname shrimp (Litopenaeus vannamei) and seaweed (Gracilaria verucosa) based on polyculture cultivation. IJMARCC 1: 6–11 . [Google Scholar]
  • Srisunot C, Babel S. 2016. Estimating the carrying capacity of green mussel cultivation by using net nutrient removal model. Mar Pollut Bull 112: 235–243 . [Google Scholar]
  • Srisunot C, Babel S. 2015. Uptake, release, and absorption of nutrients into the marine environment by the green mussel (Perna viridis). Mar Pollut Bull 97: 285–293 . [Google Scholar]
  • Stadmark J, Conley DJ. 2011. Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Mar Pollut Bull 62: 1385–1388. [Google Scholar]
  • Tantanasarit C, Babel S. 2014. Simulation of net nutrients removal by green mussel (Perna viridis) in Estuarine and Coastal Areas. Int J Environ Ecol Eng 8: 121–113 . [Google Scholar]
  • Tantanasarit C, Babel S, Englande AJ, Meksumpun S. 2013. Influence of size and density on filtration rate modelling and nutrient uptake by green mussel (Perna viridis). Mar Pollut Bull 68: 38–45 . [Google Scholar]
  • Tendencia EA. 2007. Poluculture of green mussel, brown mussles and oysters with shrimp control luminous bacterial disease in a simulated culture system. Aquaculture 272: 188–191. [Google Scholar]
  • Tendencia EA, Fermin AC, dela Pena MR, Choresca Jr CH. 2006. Effect of Epinephelus coioides, Chanoschanos, and GIFT tilapia in polyculture with Penaeus monodon on the growth of the luminous bacteria Vibrio harveyi . Aquaculture 253: 48–56. [Google Scholar]
  • Van Khoi L, Fotedar R. 2012. Integration of blue mussel (Mytilus edulis Linnaeus, 1758) with western king prawn (Penaeus latisulcatus Kishinouye, 1896) in a closed recirculating aquaculture system under laboratory conditions. Aquaculture 345–355: 84–90. [Google Scholar]
  • Vaquer-Sunyer R, Duarte CM. 2008. Treshold of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105: 15452–15457. [PubMed] [Google Scholar]
  • Watten BJ, Sirbell PL. 2006. Comparative performance of fixed film biological filters: application of reactor theory. Aquac Eng 34: 193–213 . [Google Scholar]
  • Wei Z, You J, Wu H, Yang F, Long L, Liu Q. 2017. Bioremediation using Glacilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Mar Pollut Bull 121: 313–319. [Google Scholar]
  • Yang YF, Fei XG, Song JM, Hu HY, Wang GC, Chung IK. 2006. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254: 248–255 . [Google Scholar]
  • Yuniarsih E, Nirmala K, Radiarta IN. 2014. The removal rate of nitrogen and phosphor at seaweed culture with Integrated Multi Trophic Aquaculture in Gerupuk Bay, Lombok, Nusa Tenggara Barat. J Riset Aquac 9: 487–500 . [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.