Open Access
Issue
Aquat. Living Resour.
Volume 34, 2021
Article Number 4
Number of page(s) 12
DOI https://doi.org/10.1051/alr/2021004
Published online 19 March 2021
  • Acierno R, Blancheton Jean-Paul, Bressani G, Ceruti Laetitia, Chadwick D, Roque D'Orbcastel Emmanuelle, Claricoates J, Donaldson G. 2006. Manual on effluent treatment in aquaculture: Science and Practice. Aquaetreat. CONTRACT N. COLL-CT-2003-5003 05. https://archimer.ifremer.fr/doc/00000/6496/. [Google Scholar]
  • Anton-Pardo M, Adamek Z. 2015. The role of zooplankton as food in carp pond farming: a review. J Appl Ichthyol 31: 7–14. [Google Scholar]
  • Aubin J, Rey-Valette H, Mathé S, Wilfart A, Legendre M, Slembrouck J, Chia E, Masson G, Callier M, Blancheton JP, Tocqueville A, Caruso D, Fontaine P. 2014. Guide de mise en œuvre de l’intensification écologique pour les systèmes aquacoles © Diffusion, INRA-Rennes, p. 131. ISBN: 978-2-9547969-1-8. [Google Scholar]
  • Barbe J, Schlumberger O et al. 2000. Evaluation de la production piscicole potentielle des étangs. Ingénieries − EAT 22: 49–62. [Google Scholar]
  • Bayona Y, Roucaute A et al. 2014. Secondary production of freshwater zooplankton communities exposed to a fungicide and to a petroleum distillate in outdoor pond mesocosms. Environ Toxicol Chem 33: 836–846. [CrossRef] [PubMed] [Google Scholar]
  • Bayona Y, Roucaute M et al. 2015. Effect of thiram and of a hydrocarbon mixture on freshwater macroinvertebrate communities in outdoor stream and pond mesocosms: I. Study design, chemicals fate and structural responses. Ecotoxicology 24: 1976–1995. [CrossRef] [PubMed] [Google Scholar]
  • Brune DE, Schwartz G et al. 2003. Intensification of pond aquaculture and high rate photosynthetic systems. Aquacult Eng 28: 65–86. [CrossRef] [Google Scholar]
  • Cauchie HM, Hoffmann L, et al. 2000. Metazooplankton dynamics and secondary production of Daphnia magna (Crustacea) in an aerated waste stabilization pond. J Plankton Res 22: 2263–2287. [Google Scholar]
  • Christensen V, Pauly D. 1992. ECOPATH-II − a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61: 169–185. [CrossRef] [Google Scholar]
  • Cunha ME, Quental-Ferreira H, et al. 2019. Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture 512: 734297. [Google Scholar]
  • Downing JA, Prairie YT, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51: 2388–2397. [Google Scholar]
  • FishBase. 2019. Froese, R. and D. Pauly Editors, World Wide Web electronic publication, www.fishbase.org, version (12/2019). [Google Scholar]
  • Gabaldon C, Buseva Z, et al. 2018. Littoral vegetation improves the productivity of drainable fish ponds: interactive effects of refuge for Daphnia individuals and resting eggs. Aquaculture 485: 111–118. [Google Scholar]
  • Hanson ML, Graham DW, et al. 2007. Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environ Toxicol Chem 26: 1265–1279. [CrossRef] [PubMed] [Google Scholar]
  • Hargreaves JA. 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacult Eng 34: 344–363. [CrossRef] [Google Scholar]
  • Husson F, Lê S, Pagès J. 2009. Analyse de données avec R, Presses Universitaires de Rennes, p. 238. ISBN: 978-2-7535-4869-5. [Google Scholar]
  • Iacarella JC, Barrow JL, et al. 2018. Shifts in algal dominance in freshwater experimental ponds across differing levels of macrophytes and nutrients. Ecosphere 9. [Google Scholar]
  • Jaeger C, Aubin J. 2018. Ecological intensification in multi-trophic aquaculture ponds: an experimental approach. Aquat Living Resour 31: 36. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jaeger C. 2020. Biological and physico-chemical dataset from different freshwater fishponds systems in IMTA, Portail Data INRAE. DOI: 10.15454/PTXLHE. [Google Scholar]
  • Lemke AM, Benke AC. 2009. Spatial and temporal patterns of microcrustacean assemblage structure and secondary production in a wetland ecosystem. Freshwat Biol 54: 1406–1426. [CrossRef] [Google Scholar]
  • Li M, Callier MD, et al. 2019. Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture 504: 314–325. [Google Scholar]
  • Morin A, Dumont P. 1994. A simple-model to estimate growth-rate of lotic insect larvae and its value for estimating population and community production. J N Am Benthol Soc 13: 357–367. [CrossRef] [Google Scholar]
  • Nahon S, Roussel JM, et al. 2020. Characterization of trophic niche partitioning between carp (Cyprinus carpio) and roach (Rutilus rutilus) in experimental polyculture ponds using carbon (δC-13) and nitrogen (δN-15) stable isotopes. Aquaculture 522. [Google Scholar]
  • Neori A, Chopin T, et al. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231: 361–391. [Google Scholar]
  • Neveu A. 2001. Can resident carnivorous fishes slow down introduced alien crayfish spread? Efficacity of 3 fishes species versus 2 crayfish species in experimental design. Bull Fr Peche Piscic 683–704. [CrossRef] [EDP Sciences] [Google Scholar]
  • Oertli B, Auderset-Joye D, et al. 2005. PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv −Mar Freshw Ecosyst 15: 665–679. [CrossRef] [Google Scholar]
  • Petrea SM, Mogodan A, Metaxa I, Plăcintă S, Vasile MA, Huian G. 2017. A comparative study on the evaluation of cyprinids growth performance in IMTA systems. AACL Bioflux 10: 87–102. [Google Scholar]
  • Pouil S, Samsudin R, et al. 2019. Nutrient budgets in a small-scale freshwater fish pond system in Indonesia. Aquaculture 504: 267–274. [Google Scholar]
  • Rahman MM, Nagelkerke LAJ, et al. 2008. Relationships among water quality, food resources, fish diet and fish growth in polyculture ponds: a multivariate approach. Aquaculture 275: 108–115. [Google Scholar]
  • Saha S, Jana BB. 2003. Fish-macrophyte association as a low-cost strategy for wastewater reclamation. Ecol Eng 21: 21–41. [Google Scholar]
  • Schlumberger O, Girard P. 2013. Mémento de pisciculture d'étang, Editions Quae, p. 222. ISBN: 978-2-7592-1894-3 [Google Scholar]
  • Schlottidl K. 1991. Development of zooplankton in fishponds of the Waldviertel (lower Austria). J Appl Ichthyol-Z Angew Ichthyol 7: 223–229. [CrossRef] [Google Scholar]
  • Troell M, Halling C, et al. 2003. Integratedmariculture: asking the right questions. Aquaculture 226: 69–90. [Google Scholar]
  • vanRijn J. 1996. The potential for integrated biological treatment systems in recirculating fish culture − a review. Aquaculture 139: 181–201. [Google Scholar]
  • Zhou M, Carlotti F, et al. 2010. A size-spectrum zooplankton closure model for ecosystem modelling. J Plankton Res 32: 1147–1165. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.