Issue
Aquat. Living Resour.
Volume 33, 2020
Special Issue - Ecological intensification: A new paragon for sustainable aquaculture
Article Number 21
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2020022
Published online 08 December 2020
  • Abdou K, Aubin J, Romdhane M, Le Loc'h F, Lasram F. 2017. Environmental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: a case study of a Tunisian aquaculture farm. Aquaculture 471: 204–2012. [CrossRef] [Google Scholar]
  • Abo K, Yokayama H. 2007. Assimilative capacity of fish farm environments as determined by benthic oxygen uptake rate: studies using a numerical model. Bull Fish Res Agen 19: 79–87. [Google Scholar]
  • Al-Hashmi K, Claereboudt M, Al-Azri A, Piontkovski S. 2010. Seasonal changes of Chlorophyll-a and environment characteristics in the sea of Oman. Oopen Oceanogr J 4: 107–114. [CrossRef] [Google Scholar]
  • Al-Hashmi K, Piontkovski S, Bruss G, Hamza W, Junaibi M, Bryantseva Y, Popova E. 2019a. Seasonal variations of plankton communities in coastal waters of Oman. Int J Oceans Oceanogr 13–2: 395–426. [Google Scholar]
  • AL-Hashmi K, Sarma Y, Piontkovski S, Harrison P, Al-Habsi H. 2019b. Response of phytoplankton to changes in Hydrographic properties in a subtropical embaymentin the Sea of Oman. Int J Ecol Environ Sci 45: 71–84. [Google Scholar]
  • Al-Hinai H, Al-Alawi S. 1995. Typical solar radiation for Oman. Appl Energy 52: 153–163. [CrossRef] [Google Scholar]
  • Al-Yahyai D. Aquaculture Site Selection and Zoning in Oman, in: J. Aguilar-Manjarrez, D. Soto, R. Brummett (Eds.), Aquaculture Zoning, Site Selection and Area Management Under the Ecosystem Approach to Aquaculture. Full document, FAO, and World Bank Group, Rome, 2017, pp. 271–286. Report ACS18071. [Google Scholar]
  • ANZECC. 2000. Australian and New Zealand guidelines for fresh and marine water quality. Volume 1: The Guidelines. Australian and New Zealand Environmental and Conservation Council. [Google Scholar]
  • Azevedo P, Podemski C, Hesslein R, Kasian S, Findlay D, Bureau D. 2011. Estimation of waste output by a rainbow trout cage farm using a nutritional approach and monitoring of lake water quality. Aquaculture 311: 175–186. [CrossRef] [Google Scholar]
  • Balbuena-Pecino S, Riera-Heredia N, Velez E, Gutierrez J, Navarro I, Riera-Codina M, Capilla E. 2019. Temperature affects musculoskeletal development and muscle lipid metabolism of gilthead seabream (Sparus aurata). Front Endocrinol 10: 173. [CrossRef] [Google Scholar]
  • Basaran A, Aksu M, Egemen O. 2010. Impacts of the fish farms on the water column nutrient concentrations and accumulation of heavy metals in the sediments in the eastern Aegean Sea (Turkey). Environ Monit Assess 162: 439–451. [CrossRef] [PubMed] [Google Scholar]
  • Blue Water. 2016. Environmental Impact Assessment Report for Caged Fish Farm at Quriyat. Sultanate of Oman. 172pp. [Google Scholar]
  • Braaten B. Cage cultured and environmental impacts, in: A. Bergheim (Ed), Aquaculture Engineering and Environment. Research Singpost, Kerala, India, 2007, pp. 49–91. [Google Scholar]
  • Bravo F, Grant J. 2018. Modelling sediment assimilative capacity and organic carbon degradation efficiency at marine fish farms. Aquacult Environ Interact 10: 309–328. [CrossRef] [Google Scholar]
  • Cai H, Lindsay G, Trevor C, Changwen W, Aiyi Z, Sheng Z, Meiyin, X. 2016. Modelling the nitrogen loading from large yellow croaker (Larimichthys crocea) cage aquaculture. Environment Sci Pollut Res 23: 7529–7542. [CrossRef] [Google Scholar]
  • Campuzano F, Gutierrez J, Senabre T, Mateus MD, Peran A, Belmonte A, Aliaga V, Neves R. 2015. Modelling approach to estimate the environmental and productive carrying capacity for a mediterranean coastal marine culture park. J Aquac Res Development 6: 373. [Google Scholar]
  • Cardia F, Lovatelli A. Aquaculture operations in floating HDPE cages: a field handbook. FAO Fisheries and Aquaculture Technical Paper No. 593, FAO, Rome, 2015. 152 pp. [Google Scholar]
  • Challouf R, Hamza A, Mahfoudhi M, Ghozzi K, Bradai M. 2017. Environmental assessment of the impact of cage fish farming on water quality and phytoplankton status in Monastir Bay (eastern coast of Tunisia). Aquac Int 25: 22–92. [CrossRef] [Google Scholar]
  • Chitrakar P, Sana A, Baawain M, Al-Mamun A, Bruss G, Kwarteng A. 2018. Preliminary assessment of water quality in the coast of Muscat, Oman. 13th International Conference on Coasts, Ports & Marine Structures, 26–28 November 2018, Tehran, Iran. [Google Scholar]
  • Claereboudt M. 2018. Monitoring the vertical thermal structure of the water column in coral reef Environments using divers of opportunity. Curr Trends Oceanogr Mar Sci: CTOMS-107. DOI: 10.29011/CTOMS-107.100007 [Google Scholar]
  • Codiga D. 2011. Unified Tidal Analysis and Prediction Using the UTide Matlab Functions. Technical Report 2011-01. Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. 59pp. [Google Scholar]
  • Cromey C, Nickell T, Black T. 2002. DEPOMOD. Modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 214: 211–239. [CrossRef] [Google Scholar]
  • Diaz R, Breitburg D. Fish Physiology Vol. 27: Hypoxia, Academic Press, Sand Diago, 2009. [Google Scholar]
  • EFSA. 2008. Scientific opinion of the panel on animal health and welfare on a request from the European Commission on animal welfare of husbandry systems for farmed European seabass and gilthead seabream. ESFA J 844: 1–21. [Google Scholar]
  • FAO. 2020. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome. [Google Scholar]
  • FAO. 2005. Cultured aquatic species information programme. Sparus aurata. Text by Colloca, F.; Cerasi, S. In: FAO Fisheries Division. Rome. http://www.fao.org/fishery/culturedspecies/Sparus_aurata/en (accessed November 25, 2019) [Google Scholar]
  • Friend of the Sea. 2014. Friend of the sea standard. FOS-Aqua Marine: Criteria and indicators for the Certification of sustainable marine aquaculture. Revision 2. Milano, Italy. [Google Scholar]
  • Gentry R, Froehlich H, Grimm D, Kareiva P, Michael P, Michael R, Gaines S, Halpern B. 2017. Mapping the global potential for marine aquaculture. Nat Ecol Evol 1: 1317–1324. [CrossRef] [PubMed] [Google Scholar]
  • HACH. 2015. Master catalog for water analysis 2015. HACH Company, USA. [Google Scholar]
  • Holmer M. 2010. Environmental issues of fish farming in offshore waters: perspectives, concerns, and research needs. Aquac Environ Interact 1: 57–70. [CrossRef] [Google Scholar]
  • Jónsdóttir K, Hvas M, Alfredsen J, Føre M, Alver M, Bjelland H, Oppedal F. 2019. Fish welfare based classification method of ocean current speeds at aquaculture sites. Aquac Environ Interact 11: 249–261. [CrossRef] [Google Scholar]
  • Kwarteng A, Mozumder C. 2016. Monitoring chlorophyll-a and sea surface temperature variations in SE Arabian Gulf and NW Sea of Oman from MODIS Aqua data, “Proceedings 37th Asian Conference on Remote Sensing (ACRS2016), Colombo, Sri Lanka , 2016, pp. 1572– 1577. [Google Scholar]
  • Lester S, Gentry R, Kappel C, White C, Gaines S. 2018. Offshore aquaculture in the United States: untapped potential in need of smart policy. Proc Natl Acad Sci 115: 7162–7165. [CrossRef] [Google Scholar]
  • L'Hégaret P, Lacour L, Carton X, Roullet G, Baraille R, Corréard S. 2013. A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman). Ocean Dyn . https://doi.org/10.1007/s10236-013-0616-2. [Google Scholar]
  • L'Hégaret P, Duarte R, Carton X, Vic C, Ciani D, Baraille R, Corréard S. 2015. Mesoscale variability in the Arabian Sea from HYCOM model results and observations: impact on the Persian Gulf Water path. Ocean Sci . https://doi.org/10.5194/os-11-667-2015 [Google Scholar]
  • NAS (Norsk Allmennstandardisering). 2009. NS-9415 Marine fish farms requirements for site survey, risk analyses, design, dimensioning, production, installation and operation. ICS 65.150;67.260. Standards Norway, Oslo. [Google Scholar]
  • Neofitou N, Klaoudatos S. 2008. Effect of fish farming on the water column nutrient concentration in a semi-enclosed gulf of the Eastern Mediterranean. Aquacult Res 39: 482–490. [CrossRef] [Google Scholar]
  • OATA (Ornamental Aquatic Trade Association). 2008. Water quality criteria-ornamental fish. Company limited by guarantee and registered in England No 2738119 registered office Wessex House, 40 station road, Westbury, Wiltshire, BA13 3JN, UK. [Google Scholar]
  • Okte E. 2002. Grow-out of sea bream Sparus aurata in Turkey, particularly in land-based farm with recirculation system in Canakkale: better use of water, nutrient and space. Turk J Fish Aquat Sci 2: 83–87. [Google Scholar]
  • Peran A, Campuzano F, Senabre T, Mateus M, Gutierrez J, Belmonte A, Aliaga V, Neves R. 2013. Modelling the environmental and productive carrying capacity of a great scale aquaculture park in the Mediterranean coast and its implications, in: M. Mateus, R. Neves, (Eds.), Ocean modelling for coastal management −case studies with MOHID. [Google Scholar]
  • Philminaq. 2008. Annex 2. Water quality criteria and standards for freshwater and marine aquaculture, Bureau of Fisheries and Aquatic Resources, Philippine. [Google Scholar]
  • Piontkovski S, Al-Oufi H. 2015. The Omani shelf hypoxia and the warming Arabian sea. Int J Environ Stud 27: 256–264. [CrossRef] [Google Scholar]
  • Pous S, Carton X, Lazure P. 2004. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman-Results from the GOGP99 Experiment: 1. Strait of Hormuz. J Geophys Res C Oceans 109: 1–15. [Google Scholar]
  • Price C, Morris J. 2013. Marine cage culture and environment: twenty-first century science informing a sustainable industry. NOAA technical memorandum NOS NCCOS 164, 158 pp. [Google Scholar]
  • Price C, Black K, Hargrave B, Morris J. 2015. Marine cage culture and the environment: effects on water quality and primary production. Aquac Environ Interact 6: 151–174. [CrossRef] [Google Scholar]
  • Queste B, Vic C, Heywood K, Piontkovski, S. 2018. Physical controls on oxygen distribution and denitrification potential in the North West Arabian Sea. Geophys Res Lett 45: 4143–4152. [CrossRef] [Google Scholar]
  • R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [Google Scholar]
  • Sadally S, Nazurally N, Taleb-Hossenkhan N, Bhagooli R. 2014. Micro-phytoplankton distribution and biomass in and around a channel-based fish farm: implications for sustainable aquaculture. Acta Oceanol Sin 33: 180–191. [CrossRef] [Google Scholar]
  • Sara G. 2007. Aquaculture effects on some physical and chemical properties of the water column: a meta-analysis. Chem Ecol 23: 251–262. [CrossRef] [Google Scholar]
  • UNESCO/IOC. 2020. Quality Control of in situ Sea Level Observations: A Review and Progress towards Automated Quality Control, Vol. 1. Paris, UNESCO. IOC Manuals and Guides No.83. (IOC/2020/MG/83Vol.1) [Google Scholar]
  • Vezzulli L, Moreno M, Marin V, Pezzati E, Bartoli M, Fabiano M. 2008. Organic waste impact of captured-based Atlantic Bluefin tuna aquaculture at an exposed site in the Mediterranean Sea. Estuar Coast Shelf Sci 78: 369–384. [CrossRef] [Google Scholar]
  • Welch A, Knapp A, Tourkey S, Daughtery Z, Hitchcock G, Benetti D. 2019. The nutrient footprint of a submerged-cage offshore aquaculture facility located in the tropical Caribbean. J World Aquac Soc 50: 299–316. [CrossRef] [Google Scholar]
  • Yabanli M, Egemen O. 2009. Monitoring the environmental impacts of marine aquaculture activities on the water column and sediment in vicinity of the Karaburun Peninsula (Turkey-Eastern Aegean Sea). J Fish Sci 3: 207–213. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.