Free Access
Issue
Aquat. Living Resour.
Volume 33, 2020
Article Number 22
Number of page(s) 9
DOI https://doi.org/10.1051/alr/2020020
Published online 08 December 2020
  • Ådjers K, Appelberg M, Eschbaum R, Lappalainen A, Minde A, Repecka R, Thoresson G. 2006. Trends in coastal fish stocks of the Baltic Sea. Boreal Env Res 11: 13–25. [Google Scholar]
  • Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automat Contr 19: 716–723. [CrossRef] [Google Scholar]
  • Andersen KH, Farnsworth KD, Thygesen UH, Beyer JE. 2007. The evolutionary pressure from fishing on size at maturation of Baltic cod. Ecol Modell 204: 246–252. [CrossRef] [Google Scholar]
  • Andersen KH, Jacobsen NS, Jansen T, Beyer JE. 2017. When in life does density dependence occur in fish populations? Fish Fish 18: 656–667. [CrossRef] [Google Scholar]
  • Bagenal TB, Tesch FW. Age and growth, in: Bagenal T. (Ed.), Methods for Assessment of Fish Production in Fresh Waters. Blackwell, Oxford, 1978, pp. 101– 136. [Google Scholar]
  • Berkeley SA, Chapman C, Sogard SM. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops . Ecology 85: 1258–1264. [CrossRef] [Google Scholar]
  • Beverton RJH, Holt SJ. 1957. On the dynamics of exploited fish populations. Ministery of Agriculture and Fisheries. Fish Investigat 19: 533 p. [Google Scholar]
  • Bonsdorff E, Blomqvist EM, Mattila J, Norkko A. 1997. Long-term changes and coastal eutrophication: Examples from the Åland Islands and the Archipelago Sea, northern Baltic Sea. Oceanol Acta 20: 319–329. [Google Scholar]
  • Buijse AD, Pet JS, van Densen WL, Machiels MA, Rabbinge R. 1992. A size-and age-structured simulation model for evaluating management strategies in a multispecies gill net fishery. Fish Res 13: 95–117. [CrossRef] [Google Scholar]
  • Chambers RC, Leggett WC. 1996. Maternal influences on variation in egg sizes in temperate marine fishes. Am Zool 36: 180–196. [CrossRef] [Google Scholar]
  • Conover DO, Munch SB. 2002. Sustaining fisheries yields over evolutionary time scales. Science 297: 94–96. [CrossRef] [PubMed] [Google Scholar]
  • De Roos AM, Boukal DS, Persson L. 2006. Evolutionary regime shifts in age and size at maturation of exploited fish stocks. Proc Royal Soc London B: Biol Sci 273: 1873–1880. [Google Scholar]
  • Dorn MW. 1992. Detecting environmental covariates of Pacific whiting Merluccius productus growth using a growth-increment regression model. Fish Bull 90: 260–275. [Google Scholar]
  • Garcia S, Kolding MJ, Rice J, Rochet M-J, Zhou S, Arimoto T, Beyer JE, Borges L, Bundy A, Dunn D, Fulton EA, Hall M, Heino M, Law R, Makino M, Rijnsdorp AD, Simard F, Smith ADM. 2012. Reconsidering the consequences of selective fisheries. Science 335: 1045–1047. [CrossRef] [PubMed] [Google Scholar]
  • Heikinheimo O, Pekcan-Hekim Z, Raitaniemi J. 2014. Spawning stock–recruitment relationship in pikeperch Sander lucioperca (L.) in the Baltic Sea, with temperature as an environmental effect. Fish Res 155: 1–9. [CrossRef] [Google Scholar]
  • Heikinheimo O, Setälä J, Saarni K, Raitaniemi J. 2006. Impacts of mesh-size regulation of gillnets on the pikeperch fisheries in the Archipelago Sea, Finland. Fish Res 77: 192–199. [CrossRef] [Google Scholar]
  • Heino M, Pauli BD, Dieckmann U. 2015. Fisheries-induced evolution. Annu Rev Ecol Evol Syst 46: 461–480. [CrossRef] [Google Scholar]
  • HELCOM. 2007. Climate change in the Baltic Sea Area. HELCOM Thematic Assessment 2007. Baltic Sea Environmental Proceedings No. 111. [Google Scholar]
  • Hilborn R, Walters CJ. 1992. Quantitative Fisheries Stock Assessment: choice, Dynamics and Uncertainty. Chapman and Hall, New York, 570 p. [Google Scholar]
  • Jones CM. 2000. Fitting growth curves to retrospective size-at-age data. Fish Res 46: 123–129. [CrossRef] [Google Scholar]
  • Jørgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, Ernande B, Gårdmark A, Johnston F, Matsumura S, Pardoe H, Raab K, Silva A, Vainikka A, Dieckmann U, Heino M, Rijnsdorp AD. 2007. Managing evolving fish stocks. Science 318: 1247–1248. [CrossRef] [PubMed] [Google Scholar]
  • Kamler E. 2005. Parent–egg–progeny relationships in teleost fishes: an energetics perspective. Rev Fish Biol Fish 15: 399–421. [CrossRef] [Google Scholar]
  • Kjellman J, Lappalainen J, Urho L, Hudd R. 2003. Early determination of perch and pikeperch recruitment in the northern Baltic Sea. Hydrobiologia 495: 181–191. [CrossRef] [Google Scholar]
  • Kokkonen E, Vainikka A, Heikinheimo O. 2015. Probabilistic maturation reaction norm trends reveal decreased size and age at maturation in an intensively harvested stock of pikeperch Sander lucioperca . Fish Res 167: 1–12. [CrossRef] [Google Scholar]
  • Kullenberg G. Physical oceanography, in Voipio A. (ed.), The Baltic Sea. Elsevier Oceanography series No. 30. Elsevier Scientific Publishing Company, Amsterdam, 1981, pp. 135–181. [Google Scholar]
  • Kraak SB, Haase S, Minto C, Santos, J. 2019. The Rosa Lee phenomenon and its consequences for fisheries advice on changes in fishing mortality or gear selectivity. ICES J Mar Sci 76: 2179–2192. [CrossRef] [Google Scholar]
  • Kristiansen TS, Svåsand, T. 1998. Effect of size selective mortality on growth of coastal cod illustrated by tagging data and an individual based growth and mortality model. J Fish Biol 52: 688–705. [CrossRef] [Google Scholar]
  • Lappalainen A, Söderkultalahti P, Wiik T. 2002. Changes in the commercial fishery for pikeperch (Stizostedion lucioperca) on the Finnish coast from 1980 to 1999–Consequences of environmental and economic factors. Arch Fish Mar Res 49: 199–212. [Google Scholar]
  • Lappalainen J, Erm V, Kjellman J, Lehtonen H. 2000. Size-dependent winter mortality of age-0 pikeperch (Stizostedion lucioperca) in Pärnu Bay, the Baltic Sea. Can J Fish Aquat Sci 57: 451–458. [CrossRef] [Google Scholar]
  • Lappalainen J, Malinen T, Rahikainen M, Vinni M, Nyberg K, Ruuhijärvi J, Salminen M. 2005b. Temperature dependent growth and yields of pikeperch in Finnish lakes. Fish Manage Ecol 12: 27–35. [CrossRef] [Google Scholar]
  • Lappalainen J, Milardi M, Nyberg K, Venäläinen A. 2009. Effects of water temperature on year-class strengths and growth patterns of pikeperch (Sander lucioperca (L.)) in the brackish Baltic Sea. Aquat Ecol 43: 181–191. [CrossRef] [Google Scholar]
  • Lappalainen J, Vinni M, Kjellman J. 2005a. Diet, condition and mortality of pikeperch (Sander lucioperca) during their first winter; Lake Hiidenvesi − studies on a clay-turbid and eutrophic multi-basin lake. Adv Limnol 59: 207–217. [Google Scholar]
  • Laugen AT, Engelhard GH, Whitlock R, Arlinghaus R, Dankel DJ, Dunlop ES, Eikeset AM, Enberg K, Jørgensen C, Matsumura S, Nusslé S, Urbach D, Baulier L, Boukal DS, Ernande B, Johnston FD, Mollet F, Pardoe H, Therkildsen NO, Uusi-Heikkilä S, Vainikka A, Heino M, Rijnsdorp AD, Dieckmann U. 2014. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Fish Fish 15: 65–96. [CrossRef] [Google Scholar]
  • Law R. 2000. Fishing, selection, and phenotypic evolution. ICES J Mar Sci 57: 659–668. [Google Scholar]
  • Law R. 2007. Fisheries-induced evolution: present status and future directions. Mar Ecol Progr Ser 335: 271–278. [CrossRef] [Google Scholar]
  • Law R, Grey DR. 1989. Evolution of yields from populations with age-specific cropping. Evol Ecol 3:343–359. [CrossRef] [Google Scholar]
  • Lehtonen H. 1983. Stocks of pike-perch (Stizostedion lucioperca L.) and their management in the Archipelago Sea and the Gulf of Finland. Finn Fish Res 5: 1–16. [Google Scholar]
  • Lehtonen H. 1987. Selection of minimum size limit for pike-perch (Stizostedion lucioperca) in the coastal waters of Finland. Proc V Congr Europ Ichthyol, Stockholm , 351–355. [Google Scholar]
  • Lehtonen H, Hansson S, Winkler H. 1996. Biology and exploitation of pikeperch Stizostedion lucioperca (L.), in the Baltic Sea area. Ann Zool Fenn 33: 525–535. [Google Scholar]
  • Leppäkoski E, Helminen H, Hänninen J, Tallqvist M. 1999. Aquatic biodiversity under anthropogenic stress: an insight from the Archipelago Sea (SW Finland). Biodiv Conserv 8:55–70. [CrossRef] [Google Scholar]
  • Lorenzen K, Enberg, K. 2002. Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc Royal Soc Lond B: Biological Sciences 269: 49–54. [CrossRef] [Google Scholar]
  • Machiels MA, Wijsman J. 1996. Size-selective mortality in an exploited perch population and the reconstruction of potential growth. Ann Zool Fenn 33: 397–401. [Google Scholar]
  • Marteinsdottir G, Steinarsson A. 1998. Maternal influence on the size and viability of cod (Gadus morhua L.) eggs and larvae. J Fish Biol 52: 1241–1258. [Google Scholar]
  • Morgan MJ. 2018. Understanding biology to improve advice for fisheries management. ICES J Mar Sci 75: 923–931. [CrossRef] [Google Scholar]
  • Myers RA, Mertz G. 1998. The limits of exploitation: a precautionary approach. Ecol Appl 8 (sp 1): S165–S169. [CrossRef] [Google Scholar]
  • Official Statistics of Finland (OSF): Commercial Marine Fishery [e-publication]. Helsinki: Natural Resources Institute Finland. http://www.stat.fi/til/akmer/index_en.html [Google Scholar]
  • Ottersen G, Hjermann DØ, Stenseth NC. 2006. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish Oceanogr 15: 230–243. [CrossRef] [Google Scholar]
  • Olin M, Vainikka A, Roikonen T, Ruuhijärvi J, Huuskonen H, Kotakorpi M, Vesala S, Ala-Opas P, Tiainen J, Nurminen L, Lehtonen H. 2018. Trait related variation in the reproductive characteristics of female pikeperch (Sander lucioperca). Fish Manage Ecol 25: 220–232. [CrossRef] [Google Scholar]
  • Pekcan-Hekim Z, Urho L, Auvinen H, Heikinheimo O, Lappalainen J, Raitaniemi J, Söderkultalahti P. 2011. Climate warming and pikeperch year-class catches in the Northern Baltic Sea. Ambio 40: 447–456. [CrossRef] [Google Scholar]
  • Rose KA, Cowan JH, Jr, Winemiller KO, Myers RA, Hilborn R. 2001. Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2: 293–327. [CrossRef] [Google Scholar]
  • Ruuhijärvi J, Salminen M, Nurmio T. 1996. Releases of pikeperch (Stizostedion lucioperca (L.)) fingerlings in lakes with no established pikeperch stock. Ann Zool Fenn 33: 553–567. [Google Scholar]
  • Saulamo K, Thoresson G. 2005. Management of pike-perch migrating over management areas in a Baltic archipelago Area. Ambio 34: 118–122. [CrossRef] [PubMed] [Google Scholar]
  • Sinclair AF, Swain DP, Hanson JM. 2002. Measuring changes in the direction and magnitude of size-selective mortality in a commercial fish population. Can J Fish Aquat Sci 59: 361–371. [CrossRef] [Google Scholar]
  • Svedäng H, Hornborg S. 2014. Selective fishing induces density-dependent growth. Nat Commun 5: 1–6. [CrossRef] [Google Scholar]
  • Vainikka A, Hyvärinen P. 2012. Ecologically and evolutionarily sustainable fishing of the pikeperch Sander lucioperca: Lake Oulujärvi as an example. Fish Res 113: 8–20. [CrossRef] [Google Scholar]
  • Vainikka A, Olin M, Ruuhijärvi J, Huuskonen H, Eronen R, Hyvärinen P. 2017. Model-based evaluation of the management of pikeperch (Sander lucioperca) stocks using minimum and maximum size limits. Boreal Env Res 22: 187–212. [Google Scholar]
  • Van Densen WLT. 1987. Gillnet selectivity to pikeperch, Stizostedion lucioperca (L.), and perch, Perca fluviatilis L., caught mainly wedged. Aquacult Fish Manag 18: 95–106. [Google Scholar]
  • Zhou S, Smith AD, Punt AE, Richardson AJ, Gibbs M, Fulton EA, Pascoe S, Bulman C, Bayliss P, Sainsbury K. 2010. Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proc Nat Acad Sci 107: 9485–9489. [CrossRef] [Google Scholar]
  • Zimmermann F, Jørgensen C. 2017. Taking animal breeding into the wild: regulation of fishing gear can make fish stocks evolve higher productivity. Mar Ecol Progr Ser 563: 185–195. [CrossRef] [Google Scholar]
  • Zimmermann F, Ricard D, Heino M. 2018. Density regulation in Northeast Atlantic fish populations: density dependence is stronger in recruitment than in somatic growth. J Anim Ecol 87: 672–681. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.