Free Access
Issue
Aquat. Living Resour.
Volume 32, 2019
Article Number 18
Number of page(s) 9
DOI https://doi.org/10.1051/alr/2019015
Published online 18 July 2019
  • An HS, Kim EM, Lee JH, Noh Jk, An CM, Yoon SJ, Park KD, Myeong JI. 2011. Population genetic structure of wild and hatchery black rockfish Sebastes inermis in Korea, assessed using cross-species microsatellite markers. Genet Mol Res 10: 2492–2504. [Google Scholar]
  • An HS, Lee JW, Park JY, Jung HT. 2013. Genetic structure of the Korean black scraper Thamnaconus modestus inferred from microsatellite marker analysis. Mol Biol Rep 40: 3445–3456. [Google Scholar]
  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for bayesian evolutionary analysis. Plos Comput Biol 10: e1003537. [Google Scholar]
  • Charlesworth D. 2003. Effects of inbreeding on the genetic diversity of populations. Philos T R Soc B 358: 1051–1070. [CrossRef] [Google Scholar]
  • Chen WZ, Li CS, Hu F. 2000. Application and improvement of virtual population analysis (VPA) in stock assessment of Thamnaconus septentrionalis . J Fish Chin 24: 522–526. [Google Scholar]
  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM. 2009. The Last Glacial Maximum. Science 325: 710–714. [Google Scholar]
  • Corander J, Waldmann P, Marttinen P, Sillanpää MJ. 2004. BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20: 2363–2369. [CrossRef] [PubMed] [Google Scholar]
  • Drummond AJ, Bouckaert RR. 2015. Bayesian and evolutionary analysis with BEAST. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods 9: 772. [Google Scholar]
  • Domingues RR, Hilsdorf AWS, Shivji MM, Hazin FVH, Gadig OBF. 2018. Effects of Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Rev Fish Biol Fisher 28: 213–227. [CrossRef] [Google Scholar]
  • Donaldson KA, Wilson RR. 1999. Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13: 208–213. [Google Scholar]
  • Excoffier L, Lischer HEL. 2010. ARLEQUIN suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. [Google Scholar]
  • Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925. [PubMed] [Google Scholar]
  • Hatab S, Chen ML, Miao WH, Lin JH, Wu DD, Wang CY, Yuan PX, Deng SG. 2017. Protease Hydrolysates of Filefish (Thamnaconus modestus) Byproducts Effectively Inhibit Foodborne Pathogens. Foodborne Pathog Dis 7: 325–335. [Google Scholar]
  • Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. [CrossRef] [PubMed] [Google Scholar]
  • Hu JH, Jiang ZG, Chen J, Qiao HJ. 2015. Niche divergence accelerates evolution in Asian endemic Procapra gazelles. Sci Rep 5: 10069. [CrossRef] [PubMed] [Google Scholar]
  • Iguchi K, Tanimura Y, Nishida M. 1997. Sequence divergence in the mtDNA control region of amphidromous and landlocked forms of ayu. Fisheries Sci 63: 901–905. [CrossRef] [Google Scholar]
  • Kim AR, Bae HJ, Kim HG, Oh CW. 2016. Age and growth of filefish, Thamnaconus modestus (Günther, 1877) off the Jeju Island of Korea. Ocean Sci J 51: 355–362. [CrossRef] [Google Scholar]
  • Kwon JH, Kausar T, Noh J, Kim DH, Byun MW, Kim KS, Kim KS. 2007. The identification of irradiated seasoned filefish (Thamnaconus modestus) by different analytical methods. Radiat Phys Chem 76: 1833–1836. [CrossRef] [Google Scholar]
  • Li PL, Jiang MC, Xu JB, Liu B. 2002. Marine cage-culture technology of Thamnaconus modestus . China Fish 8: 61–62. [Google Scholar]
  • Li YF, Chen GB, Yu J, Wu SQ, Xiong D, Li X, Cui K, Li YZ. 2016. Population genetics of Thamnaconus hypargyreus (Tetraodontiformes: Monacanthidae) in the South China Sea. Mitochondrial DNA A , 27: 798–805. [CrossRef] [Google Scholar]
  • Liu JX, Gao TX, Yokogawa K, Zhang YP. 2006. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol Phylogenet Evol 39: 799–811. [Google Scholar]
  • Liu K, Zhang LL, Zhang QW, Chen SQ, Liu CL, Bian L. 2017. Study on Thamnaconus septentrionalis under industrial aquaculture condition. Fishey Modernization 44: 35–40. [Google Scholar]
  • Liu M, Lu ZC, Gao TX, Yanagimoto T, Sakurai Y. 2010. Remarkably low mtDNA control region diversity and shallow population structure in Pacific cod Gadus macrocephalus . J Fish Biol 77: 1071–1082. [CrossRef] [PubMed] [Google Scholar]
  • Miyajima-Taga Y, Masuda R, Yamashita Y. 2017. Feeding capability of black scraper Thamnaconus modestus on giant jellyfish Nemopilema nomurai evaluated through field observations and tank experiments. Environ Biol Fish 100: 1237–1249. [CrossRef] [Google Scholar]
  • Mizuno K, Shimizu-Yamaguchi S, Miura C, Miura T. 2012. Method for efficiently obtaining fertilized eggs from the black scraper Thamnaconus modestus by natural spawning in captivity. Fisheries Sci 78: 1059–1064. [CrossRef] [Google Scholar]
  • NFRDI. 2009. Research on actual fisheries state and biological characteristic of Thamnaconus modestus, 2009. National Fisheries Research and Development Istitute, Busan, NFRDI Research Paper. [Google Scholar]
  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-Tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268–274. [CrossRef] [PubMed] [Google Scholar]
  • Pelletier TA, Crisafulli C, Wagner S, Zellmer AJ, Carstens BC. 2015. Historical Species Distribution Models Predict Species Limits in Western Plethodon Salamanders. Syst Biol 64: 909–925. [CrossRef] [PubMed] [Google Scholar]
  • Pu ZS, Xu YM. 1985. Analysis of Navodon septentrionalos populations in the east China sea. Marin Fish 7: 6–11. [Google Scholar]
  • Qian SX, Hu YZ. 1980. A Preliminary study on the age and growth of filefish (Navodon septentrionalos). J Fisheries China 4: 197–206. [Google Scholar]
  • Ramos-Onsins SE, Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Mol Biol and Evol 19: 2092–2100. [Google Scholar]
  • Rice WR. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225. [CrossRef] [PubMed] [Google Scholar]
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biol 61: 539–542. [CrossRef] [PubMed] [Google Scholar]
  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol Biol Evol 34: 3299–3302. [CrossRef] [PubMed] [Google Scholar]
  • Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual , third ed. New York: Cold Spring Harbor Laboratory Press. [Google Scholar]
  • Song N, Ma GQ, Zhang XM, Gao TX, Sun DR. 2013. Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis. Environ Biol Fish 97: 69–77. [CrossRef] [Google Scholar]
  • Stewart DT, Baker AJ. 1994. Patterns of sequence variation in the mitochondrial D‐loop region of shrews. Mol Biol Evol 11: 9–21. [PubMed] [Google Scholar]
  • Su JX, Li CS. 2002. Fauna Sinica Osteichthyes Tetraodontiformes Pegasiformes Gobiesociformes Lophiiformes . Beijing: Science Press. [Google Scholar]
  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595. [PubMed] [Google Scholar]
  • Wang SM. 1988. A preliminary study on Thamnaconus modestus in the Yellow Sea and Bohai Sea. Marin Fish 1: 16–19. [Google Scholar]
  • Wang ZY, Zhang Y, Zhao LL, Song N, Han ZQ, Gao TX. 2016. Shallow mitochondrial phylogeographical pattern and high levels of genetic connectivity of Thamnaconus hypargyreus in the South China Sea and the East China Sea. Biochem Syst Ecol 67: 110–118. [Google Scholar]
  • Wang ZY. 2017. Molecular phylogeography and phylogenetic analysis of Thamnaconus and Platycephalus in China seas . Qingdao: Ocean University of China. [Google Scholar]
  • Yamada U, Tokimura U, Horikawa H, Nakabo T. 2007. Fishes and fisheries of the East China and Yellow Seas . Kanagawa: Tokai University Press. [Google Scholar]
  • Yamanoue Y, Miya M, Matsuura K, Katoh M, Sakai H, Nishida M. 2008. A new perspective on phylogeny and evolution of tetraodontiform fishes (Pisces: Acanthopterygii) based on whole mitochondrial genome sequences: Basal ecological diversification? BMC Evol Biol 8: 212–220. [CrossRef] [PubMed] [Google Scholar]
  • Yan S, Catanese G, Brown CL, Wang M, Yang CP, Yang TB. 2015. Phylogeographic study on the chub mackerel (Scomber japonicus) in the Northwestern Pacific indicates the late Pleistocene population isolation. Mar Ecol-Evol Persp 36: 753–765. [CrossRef] [Google Scholar]
  • Yi TL, Guo WJ, Liang XF, Yang M, Lv LY, Tian CX, Song Y, Zhao C, Sun J. 2015. Microsatellite analysis of genetic diversity and genetic structure in five consecutive breeding generations of mandarin fish Siniperca chuatsi (Basilewsky). Genet Mol Res 14: 2600–2607. [Google Scholar]
  • Zheng YJ, Fang RS, Yao WZ, Zhou RK, Lu WM. 1990. Studies on populations of greenfin filefish in the East Yellow Sea and the southwest Japan Sea. Mar Fish 12: 202–208. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.