Open Access
Issue
Aquat. Living Resour.
Volume 32, 2019
Article Number 19
Number of page(s) 17
DOI https://doi.org/10.1051/alr/2019016
Published online 26 August 2019
  • Abrahams MV, Colgan PW. 1985. Risk of predation, hydrodynamic efficiency and their influence on school structure. Environ Biol Fish 13: 195–202. [CrossRef] [Google Scholar]
  • Aydin K, Mueter F. 2007. The Bering Sea—a dynamic food web perspective. Deep-sea Res Part II: Top Stud Oceanogr 54: 2501–2525. [CrossRef] [Google Scholar]
  • Bailey KM. 1989. Interaction between the vertical distribution of juvenile walleye pollock Theragra chalcogramma in the eastern Bering Sea, and cannibalism. Mar Ecol Prog Ser 53: 205–213. [CrossRef] [Google Scholar]
  • Baird TA, Ryer CH, Olla BL. 1991. Social enhancement of foraging on an ephemeral food source in juvenile walleye pollock, Theragra chalcogramma . Environ Biol Fish 31: 307–311. [CrossRef] [Google Scholar]
  • Barange M. 1994. Acoustic identification, classification and structure of biological patchiness of the edge of the Aguhas Band and its relation to frontal features. S Afr J Mar Sci 14: 333–347. [CrossRef] [Google Scholar]
  • Barbeaux SJ, Hollowed AB. 2018. Ontogeny matters: climate variability and effects on fish distribution in the eastern Bering Sea. Fish Oceanogr 27: 1–15. [CrossRef] [Google Scholar]
  • Benoit-Bird KJ. 2009. Dynamic 3-dimensional structure of thing zooplankton layers is impacted by foraging fish. Mar Ecol Prog Ser 369: 61–76. [CrossRef] [Google Scholar]
  • Berdahl A, Torney CJ, Ioannou CC, Aria JJ, Couzin ID. 2013. Emergent sensing of complex environments by mobile animal groups. Science 229: 574–576. [CrossRef] [PubMed] [Google Scholar]
  • Bertrand A, Barbieri MA, Gerlotto F, Leiva F, Córdova J. 2006. Determinism and plasticity of fish schooling behavior as exemplified by the South Pacific jack mackerel Trachurus murphyi . Mar Ecol Prog Ser 311: 145–156. [CrossRef] [Google Scholar]
  • Bertrand A, Guitérrez M, Bertrand S, Espinoza P, Gerlotto F, Ledesma J, Quesquén R, Alza L, Peraltilla S, Chipollini A, Chavez F. 2005. How fish habitat suitability does shape the 3D spatial organization of anchovy across scales? ICES Annual Conference, Aberdeen, UK, 20-24/09/2006, ICES CM/U:10. [Google Scholar]
  • Bodholt H, Solli H. 1992. Split beam techniques used in Simrad EK500 to measure target strength. In: World Fisheries Congress, May 1992, Athens, Greece, pp. 16–31. [Google Scholar]
  • Brown GE, Rive AC, Ferrari MCO, Chivers, DP. 2006. The dynamic nature of antipredator behavior: pretty fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav Ecol Sociobiol 61: 9–16. [CrossRef] [Google Scholar]
  • Bruintjes R, Purser J, Everley KA, Mangan S, Simpson SD, Radford AN. 2016. Rapid recovery following short-term acoustic disturbance in two fish species. Roy Soc Open Sci 3: 150686. [CrossRef] [Google Scholar]
  • Bumann, D, Krause J, Rubenstein D. 1997. Mortality risk of spatial positions in animal groups: the danger of being in the front. Behaviour 134: 1063–1076. [CrossRef] [Google Scholar]
  • Cantor M, Farine DR. 2018. Simple foraging rules in competitive environments can generate socially structured populations. Ecol Evol 8: 4979–4991. [CrossRef] [Google Scholar]
  • Cerri RD. 1983. The effect of light intensity on predator and prey behaviour in cyprinid fish: factors that influence prey risk. Anim Behav 31: 736–742. [CrossRef] [Google Scholar]
  • Clark PJ, Irwig K, Wobke W. 1997. Emergent properties of teams of agents in the Tileworld. Lect Notes Comp Sci 1209: 164–176. [CrossRef] [Google Scholar]
  • Coachman LK, Charnell RL. 1979. On laternal water mass interaction − a case study, Bristol Bay, Alaska. J Phys Oceanogr 9: 278–297. [CrossRef] [Google Scholar]
  • Coetzee J. 2000. Use of a shoal analysis and patch estimations system (SHAPES) to characterize sardine schools. Aquat Living Resour 13: 1–10. [CrossRef] [Google Scholar]
  • Cohen J. 1988. Statistical power analysis for the behavioral sciences. 2nd edn., Hillsdale, New Jersey: Lawrence Erlbaum Associates. [Google Scholar]
  • Conradt L, Krause J, Couzin ID, Roper TJ. 2009. “Leading according to need” in self-organizing groups. Am Nat 173: 304–312. [CrossRef] [PubMed] [Google Scholar]
  • Couzin ID, Krause J. 2003. Self-organization and collective behavior in vertebrates. Adv Stud Behav 32: 1–75. [CrossRef] [Google Scholar]
  • Couzin ID, Krause J, Franks NR, Levin SA. 2005. Effective leadership and decision-making in animal groups on the move. Nature 433: 513–516. [CrossRef] [PubMed] [Google Scholar]
  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR. 2002. Collective memory and spatial sorting in animal groups. J Theor Biol 218: 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Cutter GR, Demer, DA. 2007. Accounting for scattering directivity and fish behavior in multibeam-echosounder surveys. ICES J Mar Sci 64: 1664–1674. [CrossRef] [Google Scholar]
  • DeBlois EM, Rose GA. 1995. Effect of foraging activity on the shoal structure of cod (Gadus morhus). Can J Fish Aquat Sci 52: 2377–2387. [CrossRef] [Google Scholar]
  • De Robertis A, Handegard NO. 2012. Fish avoidance of research vessels and the efficacy of noise-reduced vessels: a review. ICES J Mar Sci 70: 34–45. [CrossRef] [Google Scholar]
  • De Robertis A, McKelvey DR, Ressler PH. 2010. Development and application of an empirical multifrequency method for backscatter classification. Can J Fish Aquat Sci 67: 1459–1474. [CrossRef] [Google Scholar]
  • De Robertis A, Wilson CD. 2010. Silent ships sometimes do encounter more fish. 2. Concurrent echosounder observations from a free-drifting buoy and vessels. ICES J Mar Sci 67: 996–1003. [CrossRef] [Google Scholar]
  • Diner N. 2001. Correction on school geometry and density: approach based on acoustic image simulation. Aquat Living Resour 14: 211–222. [CrossRef] [Google Scholar]
  • Dwyer DA, Bailey KM, Livingston PA. 1987. Feeding habits and daily ration of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea, with special reference to cannibalism. Can J Fish Aquat Sci 44: 1972–1984. [CrossRef] [Google Scholar]
  • Foote KG, Traynor JJ. 1988. Comparison of walleye pollock target-strength estimates determined from in situ measurements and calculations based on swimbladder form. J Acoustic Soc Am 83: 9–17. [CrossRef] [Google Scholar]
  • Fréon P, Gerlotto F, Soria M. 1996. Diel variability of school structure with special reference to transition periods. ICES J Mar Sci 53: 459–464. [CrossRef] [Google Scholar]
  • Gadomski DM, Parsley MJ. 2005. Vulnerability of young white sturgeon, Acipenser transmontanus, to predation in the presence of alternative pretty. Environ Biol Fish 74: 389–396. [CrossRef] [Google Scholar]
  • Gerlotto F, Bertrand S, Bez N, Gutiérrez M. 2006. Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J Mar Sci 63: 1405–1417. [CrossRef] [Google Scholar]
  • Gerlotto F, Castillo J, Saavedra A, Barbieri MA, Espejo M, Cotel P. 2004. Three-dimensional structure and avoidance behavior of anchovy and common sardine schools in central southern Chile. ICES J Mar Sci 61: 1120–1126. [CrossRef] [Google Scholar]
  • Gerlotto F, Paramo J. 2003. The three-dimensional morphology and internal structure of clupeid schools as observed using vertical scanning multibeam sonar. Aquat Living Resour 16: 113–122. [CrossRef] [Google Scholar]
  • Godin J-GJ. 1997, Evading predators. In: Godin J-GJ (ed.). Behavioural ecology of teleost fishes. Oxford: Oxford Universit Press, pp. 191– 236. [Google Scholar]
  • Godin, J-GJ, Morgan MJ. 1985. Predator avoidance and school size in a cyprinodontid fish, the banded killifish (Fundulus diaphanous Lesueur). Behav Ecol Sociobiol 16: 105–110. [CrossRef] [Google Scholar]
  • Grünbaum D, Viscido SV, Parrish JK. 2005. Extracting interactive control algorithms from group dynamics of schooling fish. Lect Notes Control Inf 309: 103–117. [Google Scholar]
  • Guttal V, Couzin ID. 2010. Social interactions, information use, and the evolution of collective migration. Proc Natl Acad Sci 107: 16172–16177. [CrossRef] [Google Scholar]
  • Hager MC, Helfman GS. 1991. Safety in numbers: shoal size choice by minnows under predatory threat. Behav Ecol Sociobiol 29: 271–276. [CrossRef] [Google Scholar]
  • Hamilton WD. 1971. Geometry for the selfish herd. J Theor Biol 31: 295–311. [CrossRef] [PubMed] [Google Scholar]
  • Handegard NO, Holmin AJ, Rieucau G. 2016. Method to observe large scale behavioural waves propagating through fish schools using 4D sonar. ICES J Mar Sci 74: 804–812. [CrossRef] [Google Scholar]
  • Hein AM, Rosenthal SB, Hagstrom GI, Berdahl A, Torney CJ, Couzin ID. 2015. The evolution of distributed sensing and collective computation in animal populations. eLife : e10955. [CrossRef] [PubMed] [Google Scholar]
  • Helfman GS, Winkelman DL. 1997. Threat sensitivity in bicolor damselfish: effects of sociality and body size. Ethology 103: 369–383. [CrossRef] [Google Scholar]
  • Hemelrijk CK, Kunz H. 2005. Density distribution and size sorting in fish schools: an individual-based model. Behav Ecol 16: 178–187. [CrossRef] [Google Scholar]
  • Hoare DJ, Couzin ID, Godin GJ, Krause J. 2004. Context-dependent group size choice in fish. Anim Behav 67: 155–164. [CrossRef] [Google Scholar]
  • Holmin AJ, Handegard NO, Korneliussen RJ, Tjøstheim D. 2012. Simulations of multi-beam sonar echos from schooling individual fish in a quiet environment. J Acoust Soc Am 132: 3720–3734. [CrossRef] [PubMed] [Google Scholar]
  • Honkalehto T, McCarthy A, Ressler P, Williams K, Jones D. 2012. Results of the acoustic-trawl Survey of Walleye Pollock (Theragra chalcogramma) on the US and Russian Bering Sea Shelf in June − August 2010 (DY1006). AFSC Processed Report 2012-01, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. [Google Scholar]
  • Honkalehto T, Ressler PH, Towler RH, Wilson CD. 2011. Using acoustic data from fishing vessels to estimate walleye pollock (Theragra chalcogramma) abundance in the eastern Bering Sea. Can J Fish Aquat Sci 68: 1231–1242. [CrossRef] [Google Scholar]
  • Honkalehto T, McCarthy A, Ressler P, Stienessen S, Jones, D. 2010. Results of the acoustic-trawl Survey of Walleye Pollock (Theragra chalcogramma) on the US and Russian Bering Sea Shelf in June − August 2009 (DY0909). AFSC Processed Report 2010-03, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. [Google Scholar]
  • Honkalehto T, Williamson N, Jones D, McCarthy A, McKelvey D. 2008. Results of the echo integration-trawl survey of walleye pollock (Theragra chalcogramma) on the US and Russian Bering Sea shelf in June and July 2007. US Department of Commerce, NOAA Technical Memo. NMFS-AFSC-190. [Google Scholar]
  • Jolles JW, Boogert NJ, Sridhar VH, Couzin ID, Manica A. 2017. Consistent individual differences drive collective behaviour and group functioning of schooling fish. Curr Biol 27: 2862–2868. [CrossRef] [PubMed] [Google Scholar]
  • Jones DT, Stienessen S, Lauffenburger N. 2017. Results of the acoustic-trawl Survey of Walleye Pollock (Gadus chalcogammus) in the Gulf of Alaska, June − August 2015 (DY2015-06). AFSC Processed Report 2017-03, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115. [Google Scholar]
  • Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID. 2011. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA 108: 18720–18725. [CrossRef] [Google Scholar]
  • Kim S. 1990. Status of fishery and science of Bering Sea walleye pollock: 1. History and importance of fisheries. Ocean Res 12: 117–128. [Google Scholar]
  • Kinder TH, Schumacher JD. 1981. Hydrographic structure over the continental shelf of the Southeast Bering Sea. In: Hood DW, Calder JA. (Eds.), The Eastern Bering Sea Shelf: Oceanography and Resources, University of Washington Press, Seattle, WA, pp. 31– 52. [Google Scholar]
  • Kline RB. 1998. Principles and Practice of Structural Equation Modeling. New York: The Guilford Press. [Google Scholar]
  • Krause J, Ruxton GD. 2002. Living in Groups. Oxford, England: Oxford University Press. [Google Scholar]
  • Levin SA. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967. [CrossRef] [Google Scholar]
  • Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68: 619–640. [CrossRef] [Google Scholar]
  • Mackinson S, Nøttestad L, Guénette S, Pitcher T, Misund OA, Fernö A. 1999. Cross-scale observations on distribution and behavioural dynamics of ocean feeding Norwegian spring-spawning herring (Clupea harengus L.). ICES JMar Sci 56: 613–626. [CrossRef] [Google Scholar]
  • MacLennan, DN, Fernandes PG, Dalen J. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES J Mar Sci 59: 365–369. [CrossRef] [Google Scholar]
  • Maes, J Ollevier F. 2002. Size structure and feeding dynamics in estauarine clupeoid fish schools: field evidence for the school trap hypothesis. Aquat Living Resour 15: 211–216. [CrossRef] [Google Scholar]
  • Muiño, R, Carrera P, Iglesias M. 2003. The characterization of sardine (Sardina pilchardus Walbaum) schools off the Spanish-Atlantic coast. ICES J Mar Sci 60: 1361–1372. [CrossRef] [Google Scholar]
  • Näslund J, Pettersson L, Johnsson JI. 2016. Behavioural reactions of three-spined sticklebacks to simulated risk of predation—effects of predator distance and movement. FACETS 1: 55–66. [CrossRef] [Google Scholar]
  • Nero RW Magnuson JJ. 1989. Characterization of patches along transects using high-resolution 70-khz integrated acoustic data. Can J Fish Aquat Sci 46: 2056–2064. [CrossRef] [Google Scholar]
  • Newlands NK, Porcelli TA. 2008. Measurement of the size, shape and structure of Atlantic Bluefin tuna schools in the open ocean. Fish Res 91: 42–55. [CrossRef] [Google Scholar]
  • Nøttestad, L, Axelsen BE. 1999. Herring schooling manoeuvres in response to killer whale attack. Can J Zool 77: 1540–1546. [CrossRef] [Google Scholar]
  • Olla BL Davis MW. 1990. Behavioral responses of juvenile walleye pollock Theragra chalcogramma Pallas to light, thermoclines and food: possible role in vertical distribution. J Exp Mar Biol Ecol 135: 59–68. [CrossRef] [Google Scholar]
  • Olla BL, Studholme AL, Bejda AJ. 1985. Behavior of juvenile bluefish Pomatomus saltarix in vertical thermal gradients: influence of season, temperature acclimation and food. Mar Ecol Prog Ser 23: 165–175. [CrossRef] [Google Scholar]
  • Page LM, Espinosa-Pérez H, Findley LT, Gilbert CR, et al. 2013. Common and scientific names of fishes from the United States, Canada, and Mexico. 7th Edition, Bethesda, Maryland: Spec Publ Am Fish Soc No. 34. [Google Scholar]
  • Paramo, J, Bertrand S, Villalobos H, Gerlotto F. 2007. A three-dimensional approach to school typology using vertical scanning multibeam sonar. Fish Res 84: 171–179. [CrossRef] [Google Scholar]
  • Paramo J, Gerlotto F, Oyarzun C. 2010. Three dimensional structure and morphology of pelagic fish schools. J Appl Ichthyol 26: 853–860. [CrossRef] [Google Scholar]
  • Parrish JK, Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregations. Science 284: 99–101. [CrossRef] [PubMed] [Google Scholar]
  • Parrish JK, Viscido SV, Grünbaum D. 2002. Self-organized fish schools: an examination of emergent properties. Biol Bull 202: 296–305. [CrossRef] [PubMed] [Google Scholar]
  • Peterson DL, Parker VT. 1998, Ecological scale: theory and applications. New York: Columbia University Press. [Google Scholar]
  • Pitcher TJ, Parrish JK. 1993, Functions of shoaling behavior in teleosts. In: Pitcher JT (Ed.), Behavior of Teleost Fishes 2nd edn. London, England: Chapman and Hall, pp. 363–439. [CrossRef] [Google Scholar]
  • Pitcher, TJ, Partridge BL. 1979. Fish school density and volume. Mar Biol 54: 383–394. [CrossRef] [Google Scholar]
  • Reid D, Scalabring C, Petigas P, Massé J, Aukland R, Carrera P, Gerogakarakos S. 2000. Standard protocols for the analysis of school based data from echo sounder surveys. Fish Res 47: 125–136. [CrossRef] [Google Scholar]
  • Ressler PH, De Robertis A, Kotwicki S. 2014. The spatial distribution of euphausiids and walleye pollock in the eastern Bering Sea does not imply top-down control by predation. Mar Ecol Prog Ser 50: 111–222. [CrossRef] [Google Scholar]
  • Ressler PH, De Robertis A, Warren JD, Smith JN, Kotwicki S. 2012. Developing an acoustic survey of euphausiids to understand tropic interactions in the Bering Sea ecosystem. Deep-Sea Res Pt II 65–70: 184–195. [CrossRef] [Google Scholar]
  • Rieucau G, Fernö A, Ioannou CC, Handegard NO. 2015. Towards of a firmer explantion of large shoal formation, maintenance and collective reactions in marine fish. Rev Fish Biol Fish 25: 21–37. [CrossRef] [Google Scholar]
  • Rieucau G, Holmin AJ, Castillo JC, Couzin ID, Handegard NO. 2016. School level structural and dnamic adjustments to risk promote information transfer and collective evasion in herring. Anim Behav 117: 69–78. [CrossRef] [Google Scholar]
  • Rose GA. 1993. Cod spawning on a migration highway in the northwest Atlantic. Nature 366: 458–461. [CrossRef] [Google Scholar]
  • Rosnow RL, Rosenthanl R. 1996. Meta-analytic procedures for combining studies with multiple effect sizes. Psychol Bull 99: 400–106. [Google Scholar]
  • Ryer CH, Olla BL. 1992. Social mechanisms facilitating exploitation of spatially variable ephemeral food patches in a pelagic marine fish. Anim Behav 59: 403–409. [Google Scholar]
  • Ryer CH, Olla BL. 1998. Effect of light on juvenile walleye pollock shoaling and their interaction with predators. Mar Eco Prog Ser 167: 215–226. [CrossRef] [Google Scholar]
  • Seebacher F, Krause J. 2017. Physiological mechanisms underlying animal social behavior. Philos Trans R Soc Lond B Biol Sci 372: 20160231. [CrossRef] [PubMed] [Google Scholar]
  • Schneider DC. 1994, Quantitative ecology: spatial and temporal scaling. San Diego: Academic Press. [Google Scholar]
  • Schumacher JD, Stabeno PJ. 1998, The continental shelf of the Bering Sea. In: Robinson AR, Brink KH. (Eds.), The Sea: The Global Coastal Ocean: Regional Studies and Synthesis, New York: John Wiley and Sons, pp. 789– 822. [Google Scholar]
  • Similä T, Ugarte F. 1993. Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Can J Zool 71: 1494–1499. [CrossRef] [Google Scholar]
  • Simmonds J, MacLennan D. 2005, Underwater Sound. In: Fisheries Acoustics Theory and Practice, 2nd edn. Oxford, England, Blackwall Science. [Google Scholar]
  • Simrad 2004. Simrad ER60 scientific echo sounder operator manual. Horten, Norway: Simrad Subsea A/S. [Google Scholar]
  • Sogard SM, Olla BL. 1993. Effects of light, thermoclines and predator presence on vertical distribution and behavioral interaction of juvenile walleye pollock, Theragra chalcogramma Passas. J Exp Mar Biol Ecol 167: 179–195. [CrossRef] [Google Scholar]
  • Sogard SM, Olla BL. 1997. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock, Theragra chalcogramma. Environ Biol Fish 50: 405–413. [CrossRef] [Google Scholar]
  • Soria M, Bahri T, Gerlotto F. 2003. Effect of external factors (environment and survey vessel) on fish school characteristics observed by echosounder and multibeam sonar in the Mediterranean Sea. Aquat Living Resour 16: 145–157. [CrossRef] [Google Scholar]
  • Stabeno PJ, Kachel NB, Moore SE, Napp JM, Sigler M, Yamaguchi A, Zerbini AN. 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Res Pt II 65–70: 31–45. [CrossRef] [Google Scholar]
  • Stienessen SC, Parrish JK. 2013. The effect of disparate information on individual fish movement and emergent group behavior. Behav Ecol 24: 1150–160. [CrossRef] [Google Scholar]
  • Stienessen SC, Wilson CD. 2008, Juvenile Walleye Pollock Aggregation Structure in the Gulf of Alaska. In: Kruse, GH, Drinkwater, K, Ianelli, JN, Link JS, Stram DL (Eds.), Resiliency of gadid stocks to fishing and climate change: 24th Lowell Wakefield Fisheries Symposium, University of Alaska Fairbanks, Fairbanks. Alaska Sea Grant College Program, pp. 271– 287. [CrossRef] [Google Scholar]
  • Stienessen SC. 2015. Information transfer, heterogeneity, and local environmental effects on emergent group patterns defining fish schools: perspectives from different scales of observation, School of Aquatic and Fishery Sciences, University of Washington, PhD dissertation. [Google Scholar]
  • Streiner DL. 2005. Finding Our Way: An Introduction to Path Analysis. Can J Psychiatry 50: 115–122. [CrossRef] [PubMed] [Google Scholar]
  • Svensson PA, Barber I, Forsgren E. 2000. Shoaling behaviour of the two-spotted goby. J Fish Biol 56: 1477–1487. [CrossRef] [Google Scholar]
  • Swain DT, Couzin ID, Ehrich Leonard N. 2015. Coordinated Speed Oscillations in Schooling Killifish Enrich Social Communication. J Nonlinear Sci 25: 1077–1109. [CrossRef] [Google Scholar]
  • Swartzman G. 1997. Analysis of the summer distribution of fish schools in the Pacific Eastern Boundary Current. ICES J Mar Sci 54: 105–116. [CrossRef] [Google Scholar]
  • Swartzman G. 2001. Spatial patterns of Pacific hake (Merluccius productus) shoals and euphausiid patches in the California current ecosystem. In: Krause GH, Bez N, Booth Al, Dorn MW, Hills S, Lipcius RN, Pelletier D, Roy C, Smith SJ, Witherell D. (Eds.), Spatial Processes and Management of Marine Populations, University of Alaska Fairbanks, Fairbanks. Alaska Sea Grant College Program, pp. 495–512. [Google Scholar]
  • Swartzman G, Stuetzle W, Kulman K, Powojowski M. 1994. Relating the distribution of pollock schools in the Bering Sea to environmental factors. ICES J Mar Sci 51: 481–492. [CrossRef] [Google Scholar]
  • Tien JH, Levin SA, Rubenstein DI. 2004. Dynamics of fish shoals: identifying key decision rules. Evol Ecol Res 6: 555–565. [Google Scholar]
  • Towler RH, Jech JM, Horne JK. 2003. Visualizing fish movement, behavior, and acoustic backscatter. Aquat Living Resour 16: 277–282. [CrossRef] [Google Scholar]
  • Traynor JJ. 1986. Midwater abundance of walleye pollock in the eastern Bering Sea, 1979 and 1982. Int North Pac Fish Comm Bull 45: 121–135. [Google Scholar]
  • Trenkel VM, Mazauric V, Berger L. 2008. The new fisheries multibeam echosounder M E70: description and expected contribution to fisheries research. ICES J Ma. Sci 65: 645–655. [CrossRef] [Google Scholar]
  • Utne ACW. 1997. The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens . J Fish Biol 50: 926–938. [Google Scholar]
  • Viscido SV, Parrish JK, Grünbaum G. 2004. Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar Ecol Prog Ser 273: 239–249. [CrossRef] [Google Scholar]
  • Viscido SV, Parrish JK, Grünbaum D. 2005. The effect of population size and number of influential neighbors on the emergent properties of fish schools. Ecol Model 183: 347–363. [CrossRef] [Google Scholar]
  • Viscido SV, Parrish JK, Grünbaum D. 2007. Factors influencing the structure and maintenance of fish schools. Ecol Model 206: 153–165. [CrossRef] [Google Scholar]
  • Walline PD. 2007. Geostatistical simulations of eastern Bering Sea walleye pollock spatial distributions, to estimate sampling precision. ICES J Mar Sci 64: 559–569. [CrossRef] [Google Scholar]
  • Walline PD, Wilson CD, Hallowed AB, Stienessen SC. 2012. Short-term effects of commercial fishing on the distribution and abundance of walleye pollock (Theragra chalcogramma). Can J Fish Aquat Sci 69: 354–368. [CrossRef] [Google Scholar]
  • Williamson N, Traynor JJ. 1996. Application of a one-dimensional geostatistical procedure to fisheries acoustic surveys of Alaskan pollock. ICES J Mar Sci 53: 423–428. [CrossRef] [Google Scholar]
  • Wilson CD, Hollowed AB, Shima M, Walline P, Stienessen S. 2003. Interactions between commercial fishing and walleye pollock. Alaska Fish Res Bull 10: 61–77. [Google Scholar]
  • Wong BBM, Roesethal GG. 2005. Shoal choice in swordtails when preferences conflict. Ethology 111: 179–186. [CrossRef] [Google Scholar]
  • Zar JH. 1996, Biostatistical analysis, 3rd edn. Upper Saddle River, New Jersey: Prentice Hall. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.