Free Access
Aquat. Living Resour.
Volume 32, 2019
Article Number 4
Number of page(s) 11
Published online 15 February 2019
  • Acharya AP, Pavan-Kumar A, Joshi CG, Namrata P, Gireesh-Babu P, Chaudhari A, Krishna G. 2018. Development and characterization of 15 novel polymorphic microsatellites for Giant river-catfish Sperata seenghala (Sykes, 1839) using next generation sequencing approach. J Appl Ichthyol 34: 971–973. [Google Scholar]
  • Allison AM. 1998. Geologic framework and environmental status of the Ganges-Brahmaputra Delta. J Coast Res 14: 826–836. [Google Scholar]
  • Anon. Annual Report 2016-17, ICAR-National Bureau of Fish Genetic Resources, Uttar Pradesh, Lucknow, 2017. [Google Scholar]
  • Arif M. 2012. Seasonal fluctuations in food and feeding habit in reference to preferential interest in Mystus seenghala (Sykes). J Exp Zoo 15: 97–101. [Google Scholar]
  • Balloux F, Lugon-Moulin N. 2002. The estimation of population differentiation with microsatellite markers. Mol Ecol 11: 155–165. [CrossRef] [PubMed] [Google Scholar]
  • Biswas SK. 1999. A review on the evolution of rift basins in India during Gondwana with special reference to Western Indian basins and their hydrocarbon prospects. Proc Indian Natl Sci Acad 3: 261–283. [Google Scholar]
  • Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24: 621–631. [CrossRef] [PubMed] [Google Scholar]
  • Darwall WRT, Freyhof J. Lost fishes, who is counting? The extent of the threat to freshwater fish biodiversity, in: G.P. Closs, M. Krkosek, J.D. Olden (Eds.), Conservation of Freshwater Fishes, Cambridge University Press, Cambridge, 2016, pp. 1–36. [Google Scholar]
  • Diogo R. 2004. Phylogeny, origin and biogeography of catfishes: support for a Pangean origin of ‘modern teleosts’ and reexamination of some Mesozoic Pangean connections between the Gondwanan and Laurasian supercontinents. Anim Biol 54: 331–351. [CrossRef] [Google Scholar]
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81: 163–182. [Google Scholar]
  • Estoup A, Angers B. Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations, in: G. Carvalho (Ed.), Advances in Molecular Ecology, IOS Press, Amsterdam, 1998, pp. 55–86. [Google Scholar]
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  • Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47–50. [Google Scholar]
  • FAO. in: B.D. Scherf, D. Pilling (Eds.), The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture, FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome, 2015. [Google Scholar]
  • Ferraris CJ, Runge KE. 1999. Revision of the South Asian bagrid catfish genus Sperata, with the description of a new species from Myanmar. Proc Calif Acad Sci 51: 397–424. [Google Scholar]
  • Foulley J-L, Ollivier L. 2006. Estimating allelic richness and its diversity. Livest Sci 102: 150–158. [Google Scholar]
  • Gibbs HL, Prior KA, Weather head PJ, Johnson G. 1997. Genetic structure of populations of the threatened eastem massasuaga rattlesnake, Sistrurus catenatus: evidence from microsatellite DNA markers. Mol Ecol 6: 1123–1132. [CrossRef] [PubMed] [Google Scholar]
  • Hale ML, Burg TM, Steeves TE. 2012. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PloS One 7: e45170. [CrossRef] [PubMed] [Google Scholar]
  • Hartl DL, Clark AG. Principles of Population Genetics, 3rd edn, Sinauer Associates Inc., Sunderland, MA, 1997. [Google Scholar]
  • Hosking L, Lumsden S, Lewis K, Yeo A, Mc Carthy L, Bansal A, Riley J, Purvis I, Xu CF. 2004. Detection of genotyping errors by Hardy–Weinberg equilibrium testing. Eur J Hum Genet 12: 395–399. [Google Scholar]
  • Hu GF, Liang HW, Li Z, Wang CZ, Wu, QC, Liu XJ, Luo XZ, Zou GW. 2009. Isolation and characterization of polymorphic microsatellite markers in the yellow catfish, Pelteobagrus fulvidraco . Conserv Genet Resour 1: 63. [Google Scholar]
  • Jenkins, M. 2003. Prospects for biodiversity. Science 302: 1175–1177. [Google Scholar]
  • Kalinowski ST. 2004. Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5: 539–543. [Google Scholar]
  • Kappas I, Vittas S, Pantzartzi CN, Drosopoulou E, Scouras ZG. 2016. A time calibrated mitogenome phylogeny of catfish (Teleostei: Siluriformes). PLoS One 11: e0166988. [CrossRef] [PubMed] [Google Scholar]
  • Kumari P, Pavan-Kumar A, Kumar G, Alam A, Parhi J, Gireesh-Babu P, Chaudhari A, Krishna G. 2017. Genetic diversity and demographic history of the giant river catfish Sperata seenghala inferred from mitochondrial DNA markers. Mitochondrial DNA A DNA Mapp Seq Anal 28: 920–926. [PubMed] [Google Scholar]
  • Laikre L, Palm S, Ryman N. 2005. Genetic population structure of fishes: implications for coastal zone management. Ambio 34: 111–119. [Google Scholar]
  • Lugon-Moulin N, Brunner ÈH, Wyttenbach WA, Hausser J, Goudet J. 1999. Hierarchical analyses of genetic differentiation in a hybrid zone of Sorex araneus (Insectivora, Soricidae). Mol Ecol 8: 419–432. [Google Scholar]
  • Mandal S, Jena JK, Singh RK, Mohindra V, Lakra WS, Deshmukhe G, Pathak A, Lal KK. 2016. De novo development and characterization of polymorphic microsatellite markers in a schilbid catfish, Silonia silondia (Hamilton, 1822) and their validation for population genetic studies. Mol Biol Rep 43: 91–98. [CrossRef] [PubMed] [Google Scholar]
  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7: 639–655. [CrossRef] [PubMed] [Google Scholar]
  • Miyan K, Khan AM, Patel KD, Khan S, Prasad S. 2016. Otolith fingerprints reveal stock discrimination of Sperata seenghala inhabiting the Gangetic river system. Ichthyol Res 63: 294–301. [CrossRef] [Google Scholar]
  • Mohanty BP, Paria P, Das D, Ganguly S, Mitra P, Verma A, Sahoo S, Mahanty A, Aftabuddin M, Behera BK, Sankar TV. 2012. Nutrient profile of giant river-catfish Sperata seenghala (Sykes). Natl Acad Sci Lett 35: 155–161. [CrossRef] [Google Scholar]
  • Nazir A, Khan MA. 2017. Stock discrimination of Sperata aor from river Ganga using microsatellite markers: implications for conservation and management. Aquat Living Resour 30: 33. [CrossRef] [Google Scholar]
  • Nei M. 1972. Genetic distance between populations. Am Nat 106: 283–292. [Google Scholar]
  • Ng HH. 2010. Sperata seenghala. The IUCN Red List of Threatened Species 2010: e.T166476A6217203. 2010-4.RLTS.T166476A621 7203.en (accessed September 14, 2018). [Google Scholar]
  • Peakall R, Smouse PE. 2006. Genalex 6: genetic analysis in excel, population genetic software for teaching and research. Mol Ecol Notes 6: 288–295. [Google Scholar]
  • Perales-Flores LE, Sifuentes-Rincon AM, Francisco JG. 2007. Microsatellite variability analysis in farmed catfish (Ictalurus punctatus) from Tamaulipas, Mexico. Genet Mol Biol 30: 570–574. [Google Scholar]
  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. [Google Scholar]
  • Rahman MA, Uddin KMA, Zaher M. 2005. Development of artificial breeding techniques for long-whiskered catfish, Sperata aor and giant river catfish, Sperata seenghala of Bangladesh. Bangladesh J Fish Res 9: 11–12. [Google Scholar]
  • Rahman MA, Arshad A, Amin SMN. 2011. Evaluation of growth and production of the threatened Giant River Catfish, Sperata seenghala (Sykes) in polyculture with indigenous major carps. Afr J Biotechnol 10: 2999–3008. [CrossRef] [Google Scholar]
  • Rahman MA, Arshad A, Yusoff FM, Amin SMN, Marimuthu K, Ara R. 2014. Development of captive breeding and seed production techniques for giant river catfish Sperata seenghala . N Am J Aquac 76: 97–103. [Google Scholar]
  • Raj BS. 1962. The extraordinary breeding habits of the catfish Mystus aor (Ham) and Mystus seenghala (Sykes). Proc Natl Inst Sci India 28: 193–200. [Google Scholar]
  • Ranganathan V, Natarajan V. Fisheries of Mettur Reservoir, an artificial impoundment on the river Cauvery, Proceedings of the Seminar on the Ecology and Fisheries of Freshwater Reservoirs, CIFRI, Barrackpore, 1978. [Google Scholar]
  • Rice WR. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225. [CrossRef] [PubMed] [Google Scholar]
  • Rousset F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8: 103–106. [Google Scholar]
  • Ruzzante DE, Taggart CT, Cook D. 1998. A nuclear DNA basis for shelf‐and bank‐scale population structure in northwest Atlantic cod (Gadus morhua): Labrador to Georges Bank. Mol Ecol 7: 1663–1680. [Google Scholar]
  • Saigal BN, Motwani MP. 1961. Studies on the fishery and biology of the commercial catfishes of the Ganga river system. I. Early life history, bionomics and breeding of Mystus (Osteobagrus) seenghala (Sykes). Indian J Fish 8: 60–74. [Google Scholar]
  • Saini A, Dua A, Mohindra V. 2008. Comparative morphometrics of two populations of giant river catfish (Mystus seenghala) from the Indus river system. Integr Zool 3: 219–226. [CrossRef] [PubMed] [Google Scholar]
  • Saini A, Dua A, Mohindra V. 2010. Genetic variability analysis of Giant river catfish (Sperata seenghala) populations from Indus river system by RAPD-PCR. Genetika 46: 982–987. [Google Scholar]
  • Sambrook SJ, Russel DW, Janssen KA, Irwuin NJ. Molecular Cloning: A Laboratory Manual, 3rd edn, Harbor Laboratory Press, Cold Spring, New York, 2001. [Google Scholar]
  • Santos MCF, Ruffino ML, Farias IP. 2007. High levels of genetic variability and panmixia of the tambaqui Collossoma macropomum (Cuvier, 1816) in the main channel of the Amazon river. J Fish Biol 71: 33–44. [Google Scholar]
  • Sathyanesan AG. 1962. The ovarian cycle in the catfish M. seenghala (Sykes). Proc Natl Inst Sci India B 6: 497–506. [Google Scholar]
  • Sehgal P. 1967. Food and feeding habits of Mystus seenghala Sykes. Res Bull Punjab Univ 18: 149–155. [Google Scholar]
  • Sinha R, Jain V, Tandon SK, Chakraborty T. 2012. Large river systems of India. Proc Indian Natl Sci Acad 78: 277–293. [Google Scholar]
  • Slatkin M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65. [CrossRef] [PubMed] [Google Scholar]
  • Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462. [Google Scholar]
  • Srivastava S, Kushwaha B, Prakash J, Pandey M, Agarwal S, Kumar R, Nagpure NS, Singh M, Das P, Joshi CG, Jena JK. 2017. Identification and characterization of SSRs in Clarias batrachus and their application in population study. Fish Sci 83 : 265–272. [Google Scholar]
  • Sykes WH. 1839. On the fishes of the Deccan. Proc Zool Soc Lond 1838: 157–165. [Google Scholar]
  • Szpiech ZA, Rosenberg NA. 2011. On the size distribution of private microsatellite alleles. Theor Popul Biol 80: 100–113. [PubMed] [Google Scholar]
  • Talwar PK, Jhingran AG. Inland Fishes of India and Adjacent Countries, Vol. 2, CRC Press, Balkema, Rotterdam, 1991. [Google Scholar]
  • Trochta JT, Pons M, Rudd MB, Krigbaum M, Tanz A, Hilborn R. 2018. Ecosystem-based fisheries management: perception on definitions, implementations, and aspirations. PLoS One 13: e0190467. [CrossRef] [PubMed] [Google Scholar]
  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [Google Scholar]
  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S, Sullivan CA, Liermann CR, Davies PM. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1359–1370. [Google Scholar]
  • Wright S. Evolution and the Genetics of Populations: A Treatise in Four Volumes: Variability Within and Among Natural Populations, University of Chicago Press, Chicago, 1978. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.