Open Access
Issue |
Aquat. Living Resour.
Volume 32, 2019
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/alr/2019003 | |
Published online | 18 February 2019 |
- Abele D, Brey T, Philipp E. 2009. Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 44: 307–315. [CrossRef] [PubMed] [Google Scholar]
- Carriker MR. 1992. Prismatic shell formation in continuously isolated (Mytilus edulis) and periodically exposed (Crassostrea virginica) extrapallial spaces − explicable by the same concept. Am Malacol Bull 9: 193–197. [Google Scholar]
- Crenshaw MA. 1972. The soluble matrix from Mercenaria mercenaria shell. Biomineralisation 6: 6–11. [Google Scholar]
- Currey JD. 1977. Mechanical properties of mother of pearl in tension. Proc R Soc Lond 196: 443–463. [CrossRef] [Google Scholar]
- Der Sarkissian C, Pichereau V, Dupont C, Ilsoe PC, Perrigault M, Butler P, Chauvaud L, Eiriksson J, Scourse J, Paillard C, Orlando L. 2017. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol Ecol Resour 17: 835–853. [Google Scholar]
- He G, Mai K. 1999. Biological macromolecules and molecular recognition in mollusk biomineralization. Prog Biochem Biophys 26: 310–312. [Google Scholar]
- Li S, Xie L, Zhang C, Zhang Y, Gu M, Zhang R. 2004. Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp Biochem Physiol B 138: 235–243. [Google Scholar]
- Lowenstam HA. 1981. Minerals formed by organism. Science 211: 1126–1131. [Google Scholar]
- Man L, Lei YL, Tie-Gang LI. 2016. Efficiency of DNA preservation and extraction from benthic hyaline foraminifera of Ammonia SPP.: a methodological comparison. Oceanol Limnol Sin 346–353. [Google Scholar]
- Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ. 1993. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261: 1286–1292. [Google Scholar]
- Mann S, Heywood BR, Rajam S, Wade VJ. 1991. Molecular Recognition in Biomineralization, Springer, Japan, 1993. [Google Scholar]
- Mcdougall C, Degnan BM. 2018. The evolution of mollusc shells. Wiley Interdiscip Rev Dev Biol e313. [CrossRef] [PubMed] [Google Scholar]
- Mount AS, Wheeler AP, Paradkar RP, Snider D. 2004. Hemocyte-mediated shell mineralization in the Eastern oyster. Science 304: 297–300. [Google Scholar]
- Oberlander H. 1984. The invertebrate integument: biology of the integument. Science 226: 162–162. [Google Scholar]
- Okumura K, Gennes PGD. 2001. Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur Phys J E 4: 121–127. [CrossRef] [EDP Sciences] [Google Scholar]
- Pawlowski J. 2000. Introduction to the molecular systematics of Foraminifera . Micropaleontology 46: 1–12. [Google Scholar]
- Samata T. Structure and Function of the Organic Matrix in the Nacreous Layer of Pinctada fucata , Springer, Japan, 1991. [Google Scholar]
- Suquet M, de Kermoysan G, Araya RG, Queau I, Lebrun L, Le Souchu P, Mingant C. 2009. Anesthesia in Pacific oyster, Crassostrea gigas . Aquat Living Resour 22: 29–34. [CrossRef] [Google Scholar]
- Suzuki M, Nagasawa H. 2013. Mollusk shell structures and their formation mechanism. Can J Zool (Revue Canadienne de Zoologie) 91: 349–366. [CrossRef] [Google Scholar]
- Uemoto Y, Sato S, Ohtake T, Sato S, Okumura Y, Kobayashi E. 2011. Ornithine decarboxylase gene is a positional candidate gene affecting growth and carcass traits in F2 intercross chickens. Poult Sci 90: 35–41. [PubMed] [Google Scholar]
- Villanueva B. 2005. Benefits from marker-assisted selection under an additive polygenic genetic model. J Anim Sci 83: 1747–1752. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Li L, Xu F, Zhang G. 2011. Genomic DNA extraction from in vivo sampled tissue of pacific oyster, Crassostrea gigas . Isr J Aquac − Bamidgeh 63: 1–3. [Google Scholar]
- Wang X, Li L, Zhu Y, Du Y, Song X, Chen Y, Huang R, Que H, Fang X, Zhang G. 2013. Oyster shell proteins originate from multiple organs and their probable transport pathway to the shell formation front. PLoS One 8: e66522. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Li L, Zhu Y, Song X, Fang X, Huang R, Que H, Zhang G. 2014. Aragonite shells are more ancient than calcite ones in bivalves: new evidence based on omics. Mol Biol Rep 41: 7067–7071. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Song X, Li L, Zhang G. 2012. An improved method of DNA extraction from the shell of the Pacific oyster, Crassostrea gigas . Isr J Aquac − Bamidgeh 64: 1–4. [Google Scholar]
- Weiner S, Hood L. 1975. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190: 987–989. [Google Scholar]
- Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490: 49–54. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.