Free Access
Aquat. Living Resour.
Volume 30, 2017
Article Number 1
Number of page(s) 11
Published online 19 January 2017
  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., 1990, Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410. [Google Scholar]
  • Anonymous, 2014, Des dorades dévorent la production en rade de Brest. Le Marin, 10 Octobre 2014. [Google Scholar]
  • Avise J.C., Arnold J., Ball R.M., Bermingham E., Lamb T., Neigel J.E., Reeb C.A., Saunders N.C., 1987, Intraspecific phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annu. Rev. Ecol. Syst. 18, 489–522. [Google Scholar]
  • Beaugrand G., Kirby R.R., 2010, Climate, plankton and cod. Glob. Change Biol. 16, 1268–1280. [CrossRef] [Google Scholar]
  • Braley M., Goldsworthy S.D., Page B., Steer M., Austin J.J., 2010, Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 10, 466–474. [Google Scholar]
  • Brown S.C., Bizzarro J.J., Cailliet G.M., Ebert, D.A., 2012, Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environ. Biol. Fishes 95, 3–20. [Google Scholar]
  • Carlton J.T., 1993, Neoextinctions of Marine Invertebrates. Am. Zool. 33, 499–509. [Google Scholar]
  • Carreon-Martinez L., Heath D.D., 2010, Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis. Mol. Ecol. 19, 25–27. [CrossRef] [PubMed] [Google Scholar]
  • Carreon-Martinez L., Johnson T.B., Ludsin S.A., Heath D.D., 2011, Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J. Fish Biol. 78, 1170–1182. [CrossRef] [PubMed] [Google Scholar]
  • Chaoui L., Derbal F., Kara M.H., Quignard J.-P., 2005, Alimentation et condition de la dorade Sparus aurata (Teleostei: Sparidae) dans la lagune du Mellah (Algérie Nord-Est). Cah. Biol. Mar. 46, 221–225. [Google Scholar]
  • Corse E., Costedoat C., Chappaz R., Pech N., Martin J.-F., Gilles A., 2010, A PCR-based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces. Mol. Ecol. Resour. 10, 96–108. [Google Scholar]
  • Coscia I., Vogiatzi E., Kotoulas G., Tsigenopoulos C.S., Mariani S., 2011, Exploring neutral and adaptive processes in expanding populations of gilthead sea bream, Sparus aurata L., in the North-East Atlantic. Heredity 108, 537–546. [CrossRef] [PubMed] [Google Scholar]
  • Craig G., Paynter D., Coscia I., Mariani S., 2008, Settlement of gilthead sea bream Sparus aurata L. in a southern Irish Sea coastal habitat. J. Fish Biol. 72, 287–291. [Google Scholar]
  • Deagle B.E., Jarman S.N., Pemberton D., Gales N.J., 2005, Genetic Screening for Prey in the Gut Contents from a Giant Squid (Architeuthis sp.). J. Hered. 96, 417–423. [Google Scholar]
  • Dulvy N.K., Rogers S.I., Jennings S., Stelzenmller V., Dye S.R., Skjoldal H.R., 2008, Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039. [Google Scholar]
  • Edwards M., Richardson A.J., 2004, Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884. [CrossRef] [PubMed] [Google Scholar]
  • Escalas A., Ferraton F., Paillon C., Vidy G., Carcaillet F., Salen-Picard C., Le Loc’h F., Richard P., Darnaude A.M., 2015, Spatial variations in dietary organic matter sources modulate the size and condition of fish juveniles in temperate lagoon nursery sites. Estuar. Coast. Shelf Sci. 152, 78–90. [Google Scholar]
  • Espinoza M., Munroe S.E.M., Clarke T.M., Fisk A.T., Wehrtmann I.S., 2015, Feeding ecology of common demersal elasmobranch species in the Pacific coast of Costa Rica inferred from stable isotope and stomach content analyses. J. Exp. Mar. Biol. Ecol. 470, 12–25. [Google Scholar]
  • Fahy E., Green P., Quigley D.T.G., 2005, Juvenile Sparus aurata L. on the south coast of Ireland. J. Fish Biol. 66, 283–289. [Google Scholar]
  • FAO Statistics, 2015, in: FAO Fisheries and Aquaculture Department . Accessed September 2015. [Google Scholar]
  • Ferry L.A., Cailliet G.M., 1996, Sample size and data analysis: are we characterizing and comparing diet properly? In: MacKinlay D. and Shearer K. (Eds.), Feed. Ecol. Nutr. Fish, International Congress of the Biology of Fishes. American Fisheries Society, Bethesda, MD, pp. 71–80. [Google Scholar]
  • Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R., 1994, DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299. [Google Scholar]
  • Geer L.Y., Marchler-Bauer A., Geer R.C., Han L., He J., He S., Liu C., Shi W., Bryant S.H., 2010, The NCBI BioSystems database. Nucleic Acids Res. 38, 492–496. [Google Scholar]
  • Glamuzina B., Pešić A., Joksimović A., Glamuzina L., Matić-Skoko S., Conides A., Klaoudatos D., Zacharaki P., 2014, Observations on the increase of wild gilthead seabream, Sparus aurata abundance, in the eastern Adriatic Sea: problems and opportunities. Int. Aquat. Res. 6, 127–134. [CrossRef] [Google Scholar]
  • Gorokhova E., 2006, Molecular identification of the invasive cladoceran Cercopagis pengoi (Cladocera: Onychopoda) in stomachs of predators. Limnol. Oceanogr. Methods 4, 1–6. [Google Scholar]
  • Hadj Taied A., Sley A., Ghorbel M., Jarboui O., 2013, Feeding habits of Sparus aurata (Sparidae) from the Gulf of Gabes (central Mediterranean). Cah. Biol. Mar. 54, 263–270. [Google Scholar]
  • Jarman S.N., Deagle B.E., Gales N.J., 2004, Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol. Ecol. 13, 1313–1322. [CrossRef] [PubMed] [Google Scholar]
  • Krebs C.J., 1989, Ecological Methodology. Harper Collins: New York. [Google Scholar]
  • Lecointre G., Le Guyader G., 2001, Classification phylogénétique du vivant. Belin: Paris. [Google Scholar]
  • Lenoir S., Beaugrand G., Lecuyer Ér., 2011, Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Glob. Change Biol. 17, 115–129. [CrossRef] [Google Scholar]
  • Mariani S., 2006, Life-history- and ecosystem-driven variation in composition and residence pattern of seabream species (Perciformes: Sparidae) in two Mediterranean coastal lagoons. Recent Dev. Estuar. Ecol. Manag. 53, 121–127. [Google Scholar]
  • Mercier L., Mouillot D., Bruguier O., Vigliola L., Darnaude A.M., 2012, Multi-element otolith fingerprints unravel sea−lagoon lifetime migrations of gilthead sea bream Sparus aurata. Mar. Ecol. Prog. Ser. 444, 175–194. [Google Scholar]
  • Meusnier I., Singer G.A.C., Landry J.-F., Hickey D.A., Hebert P.D.N., Hajibabaei, M., 2008, A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214. [CrossRef] [PubMed] [Google Scholar]
  • Montero-Serra I., Edwards M., Genner M.J., 2015, Warming shelf seas drive the subtropicalization of European pelagic fish communities. Glob. Change Biol. 21, 144–153. [CrossRef] [Google Scholar]
  • Occhipinti-Ambrogi A., 2007, Global change and marine communities: Alien species and climate change. Mar. Pollut. Bull. 55, 342–352. [CrossRef] [PubMed] [Google Scholar]
  • Palumbi S.R., 1996, Nucleic acid II: the polymerase chain reaction. In: Hillis D.M., Moritz C., Mable. B.K. (Eds.), Mol. Syst., 205–247. [Google Scholar]
  • Paquin M.M., Buckley T.W., Hibpshman R.E., Canino M.F., 2014, DNA-based identification methods of prey fish from stomach contents of 12 species of eastern North Pacific groundfish. Deep-Sea Res. I 85, 110–117. [CrossRef] [Google Scholar]
  • Parmesan C., Yohe G., 2003, A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. [CrossRef] [PubMed] [Google Scholar]
  • Pita C., Gamito S., Erzini K., 2002, Feeding habits of the gilthead seabream (Sparus aurata) from the Ria Formosa (southern Portugal) as compared to the black seabream (Spondyliosoma cantharus) and the annular seabream (Diplodus annularis). J. Appl. Ichthyol. 18, 81–86. [Google Scholar]
  • Quigley D.T.G., 2015, GILTHEAD SEA-BREAM (Sparus aurata L.) in Irish Waters. Sherkin Comment 2015, 59. [Google Scholar]
  • R, 2015, R Core Team: A language and environment for statistical computing. Vienna, Austria. Available at: [Google Scholar]
  • Ratnasingham S., Hebert P.D.N., 2007, BOLD: The Barcode of Life Data System ( Mol. Ecol. Notes 7, 355–364. [Google Scholar]
  • Rindorf A., Lewy P., 2006, Warm, windy winters drive cod north and homing of spawners keeps them there. J. Appl. Ecol. 43, 445–453. [Google Scholar]
  • Sánchez-Lamadrid A., 2002, Stock enhancement of gilthead sea bream (Sparus aurata, L.): assessment of season, fish size and place of release in SW Spanish coast. Aquaculture 210, 187–202. [Google Scholar]
  • Šegvić-Bubić T., Grubišić L., Karaman N., Tičina V., Jelavić K.M., Katavić I., 2011, Damages on mussel farms potentially caused by fish predation – Self-service on the ropes? Aquaculture 319, 497–504. [Google Scholar]
  • Symondson W.O.C., 2002, Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641. [CrossRef] [PubMed] [Google Scholar]
  • Taguchi T., Miura Y., Krueger D., Sugiura S., 2014, Utilizing stomach content and faecal DNA analysis techniques to assess the feeding behaviour of largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus. J. Fish Biol. 84, 1271–1288. [CrossRef] [PubMed] [Google Scholar]
  • Tancioni L., Mariani S., Maccaroni A., Mariani A., Massa F., Scardi M., Cataudella S., 2003, Locality-specific variation in the feeding of Sparus aurata L.: evidence from two Mediterranean lagoon systems. Estuar. Coast. Shelf Sci. 57, 469–474. [Google Scholar]
  • Valentini A., Pompanon F., Taberlet P., 2009, DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117. [CrossRef] [PubMed] [Google Scholar]
  • Wassef E., Eisawy A., 1985, Food and feeding habits of wild and reared gilthead bream Sparus aurata L. Cybium 9, 233–242. [Google Scholar]
  • Zuccon D., Brisset J., Corbari L., Puillandre N., Utge J., Samadi S., 2012, An optimised protocol for barcoding museum collections of decapod crustaceans: a case-study for a 10–40-years-old collection. Invertebr. Syst. 26, 592. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.