Free Access
Issue
Aquat. Living Resour.
Volume 30, 2017
Article Number 2
Number of page(s) 8
DOI https://doi.org/10.1051/alr/2016033
Published online 26 January 2017
  • Acolas M.L., Veron V., Jourdan H., Begout M.L., Sabatie M.R., Bagliniere J.L., 2006, Upstream migration and reproductive patterns of a population of allis shad in a small river (L’Aulne, Brittany, France). ICES J. Mar. Sci. 63, 476–484. [CrossRef] [Google Scholar]
  • Angilletta M.J., Niewiarowski P.H., Navas C.A., 2002, The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268. [CrossRef] [Google Scholar]
  • Aprahamian M.W., Aprahamian C.D., 2001, The influence of water temperature and flow on year class strength of twaite shad (Alosa fallax fallax) from the River Severn, England. Bull. Fr. Pech. Piscic. 362/363, 953–972. [CrossRef] [EDP Sciences] [Google Scholar]
  • Baglinière J.L., 2000, Le genre Alosa sp. In: Baglinière J.L., Elie P. (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.) - Ecobiologie et variabilité des populations. Paris, INRA - CEMAGREF, pp. 3–30. [Google Scholar]
  • Bates D., Maechler M., Bolker B.M., Walker S.C., 2015, Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48. [NASA ADS] [CrossRef] [Google Scholar]
  • Becker C.D., Genoway R.G., 1979, Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater-fish. Environ. Biol. Fish. 4, 245–256. [CrossRef] [Google Scholar]
  • Béguer M., Beaulaton L., Rochard E., 2007, Distribution and richness of diadromous fish assemblages in Western Europe: large scale explanatory factors. Ecol. Freshw. Fish 16, 221–237. [CrossRef] [Google Scholar]
  • Blaxter J.H.S., 1992, The effect of temperature on larval fishes. Neth. J. Zool. 42, 336–357. [CrossRef] [Google Scholar]
  • Boisneau C., Moatar F., Bodin M., Boisneau P., 2008, Does global warming impact on migration patterns and recruitment of Allis shad (Alosa alosa L.) young of the year in the Loire River, France. Hydrobiologia 602, 179–186. [CrossRef] [Google Scholar]
  • Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B., 2004, Toward a metabolic theory of ecology. Ecology 85, 1771–1789. [CrossRef] [Google Scholar]
  • Cassou-Leins J.J., Cassou-Leins F., Boisneau P., Bagliniere J.L., 2000, La reproduction. In: J.L. B., P. E. (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.) “Ecobiologie et variabilité des populations". Paris, INRA Cemagref, pp. 73–92. [Google Scholar]
  • Chanseau M., Castelnaud G., Carry L., MartinVandembulcke D., Belaud A., 2005, Essai d’évaluation du stock de géniteurs d’alose Alosa alosa du bassin versant Gironde-Garonne-Dordogne sur la période 1987-2001 et comparaison de différents indicateurs d’abondance. Bull. Fr. Pech. Piscic. 374, 1–19. [Google Scholar]
  • Chittenden M.E., 1972, Response of young American shad, Alosa sapidissima, to low temperature. Trans. Am. Fish. Soc. 101, 680–685. [CrossRef] [Google Scholar]
  • Coutant C.C., 1987, Thermal preference: when does an asset become a liability? Environ. Biol. Fish. 18, 161–172. [CrossRef] [Google Scholar]
  • Cox D.R., Oakes D., 1984, Analysis of survival data. CRC Press. [Google Scholar]
  • Crecco V., Savoy T., Gunn L., 1983, Daily mortality rates of larval and juvenile American shad (Alosa sapidissima) in the Connecticut River with changes in year-class strengh. Can. J. Fish. Aquat. Sci. 40, 1719–1728. [CrossRef] [Google Scholar]
  • Crecco V.A., Savoy T.F., 1984, Effects of fluctuations in hydrographic conditions on year-class strength of American shad (Alosa sapidissima) in the Connecticut river. Can. J. Fish. Aquat. Sci. 41, 1216–1223. [CrossRef] [Google Scholar]
  • Crecco V.A., Savoy T.F., 1985, Effects of biotic and abiotic factors on growth and relative survival of young American shad, Alosa sapidissima in the Connecticut river. Can. J. Fish. Aquat. Sci. 42, 1640–1648. [CrossRef] [Google Scholar]
  • Delage N., Cachot J., Rochard E., Fraty R., Jatteau P., 2014, Hypoxia tolerance of European sturgeon (Acipenser sturio L., 1758) young stages at two temperatures. J. Appl. Ichthyol. 30, 1195–1202. [CrossRef] [Google Scholar]
  • Edsall T.A., 1970, The effect of temperature on the rate of development and survival of Alewife egss and larvae. Trans. Am. Fish. Soc. 99, 376–380. [CrossRef] [Google Scholar]
  • Elliott J.M., Elliott J.A., 2010, Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 77, 1793–1817. [CrossRef] [PubMed] [Google Scholar]
  • Esteves E., Andrade J.P., 2008, Diel and seasonal distribution patterns of eggs, embryos and larvae of twaite shad Alosa fallax fallax (Lacépède, 1803) in a lowland tidal river. Acta Oecol. 34, 172–185. [CrossRef] [Google Scholar]
  • Esteves E., Andrade J.P., 2012, Intrannual effects of biotic and abiotic factors on growth and mortality of anadromous twaite shad, alosa fallax fallax (Lacépède, 1803), larvae. In: Pourali K., Raad V.N. (Eds.), Larvae: Morphology, Biology and Life Cycle, Nova Science Publishers, Inc., pp. 57–82. [Google Scholar]
  • Fletcher J.W., Millard M., Mohler J.W., King K., 2001, Tank spawning techniques: relative efficacy of 2 hormones for inducing spawning in American Shad. In: Susquehanna River Anadromous Fish Restoration Committee (Ed.) Restoration of American Shad to the Susquehanna River. Harrisburg, PA, US Fish and Wildlife Service, pp. 47–60. [Google Scholar]
  • Frederich M., Pörtner H.O., 2000, Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am. J. Physiol. Regulator- Integrative Comp. Physiol. 279, R1531–R1538. [Google Scholar]
  • Heinrich J.W., 1981, Culture, feeding, and growth of alewiwes hatched in the laboratory. Prog. Fish-Cult. 43, 3–7. [CrossRef] [Google Scholar]
  • Hendricks M.L., 2003, Culture and transplant of alosines in North America. In: Limburg K.E., Waldman J.R. (Eds.), Biodiversity, status and conservation of the world’s shads. Bethesda, Maryland, American Fisheries Society Symposium 35, pp. 303–312. [Google Scholar]
  • Hendricks M.L., Tryninewski J.D., 2009, American shad hatchery operation 2008. In: Susquehanna River Anadromous Fish Restoration Committee (Ed.) Restoration of American shad to the Susquehana River Harrisburg, PA, US Fish and Wildlife Service, pp. 1–25. [Google Scholar]
  • Huey R.B., Stevenson R.D., 1979, Integrating Thermal Physiology and Ecology of Ectotherms - Discussion of Approaches. Amer. Zool. 19, 357–366. [CrossRef] [Google Scholar]
  • Hughes L., 2000, Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 15, 56–61. [Google Scholar]
  • Hundt M., Schiffer M., Weiss M., Schreiber B., Kreiss C.M., Schulz R., Gergs R., 2015, Effect of temperature on growth, survival and respiratory rate of larval allis shad Alosa alosa. Knowl. Manag. Aquat. Ecosyst. 416, 27. [CrossRef] [EDP Sciences] [Google Scholar]
  • ICES, 2015, Report of the workshop on lampreys and shads Copenhagen, Denmark, International Council for the Exploitation of the Sea (ICES), p. 206. [Google Scholar]
  • Jatteau P., Fraty R., 2012, Etude de la tolérance à l’hypoxie des juvéniles de grande alose (alosa alosa). Cestas, IRSTEA, p. 18. [Google Scholar]
  • Kamler E., Keckeis H., Bauer-Nemeschkal E., 1998, Temperature-induced changes of survival, development and yolk partitioning in Chondrostoma nasus. J. Fish Biol. 53, 658–682. [Google Scholar]
  • Kellogg R.L., 1982, Temperature requirements for the survival and early development of the anadromous alewife. Prog. Fish-Cult. 44, 63–73. [CrossRef] [Google Scholar]
  • Klauda R.J., Fischer S.A., Hall L.W., Jr., Sullivan J.A., 1991, American shad and hickory shad Alosa sapidissima and Alosa mediocris. In: Funderburk S.L., Jordan S.J., Mihursky J.A., Riley D. (Eds.), Habitat requirements for Chesapeake Bay living resources. Annapolis, MD, Chesapeake Bay Program, pp. 9-1–9-27. [Google Scholar]
  • Lanoux A., Etcheber H., Schmidt S., Sottolichio A., Chabaud G., Richard M., Abril G., 2013, Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France). Environmental Science-Processes & Impacts 15, 585–595. [CrossRef] [Google Scholar]
  • Lassalle G., Béguer M., Beaulaton L., Rochard E., 2008, Diadromous fish conservation plans need to consider global warming issues: An approach using biogeographical models. Biol. Conserv. 141, 1105–1118. [CrossRef] [Google Scholar]
  • Leggett W.C., Whitney R.R., 1972, Water temperature and the migrations of American shad. Fish. Bull. 70, 659-670. [Google Scholar]
  • Limburg K.E., 2001, Through the gauntlet again: Demographic restructuring of American shad by migration. Ecology 82, 1584–1596. [CrossRef] [Google Scholar]
  • Manel S., Debouzie D., 1997, Logistic regression and continuation ratio models to estimate insect development under variable temperatures. Ecol. Modelling 98, 237–243. [CrossRef] [Google Scholar]
  • Martin Vandembulcke D., 1999, Dynamique de la population de la grande alose (Alosa alosa L. 1758) dans le bassin versant Gironde – Garonne – Dordogne (France) : analyse et prévision par modélisation. Toulouse, Université de Toulouse, p. 115. [Google Scholar]
  • Navarro T., Carrapato C., Ribeiro F., 2014, Effects of temperature, salinity and feeding frequency on growth and mortality of twaite shad (Alosa fallax) larvae. Knowl. Managt. Aquatic Ecosyst. 412, 07. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rochard E., 2001, Migration anadrome estuarienne des géniteurs de grande alose Alosa alosa, allure du phénomène et influence du rythme des marées. Bull. Fr. Pech. Piscic. 362/363, 853–867. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ross R.M., Bennett R.M., Backman T.W., 1993, Habitat use by spawning adult, egg and larval American shad in the Delaware River. Rivers 4, 227–238. [Google Scholar]
  • Rosso L., Lobry J.R., Bajard S., Flandrois J.P., 1995, Convenient model to describe the combined effects of temperature and ph on microbial-growth. Appl. Environ. Microbiol. 61, 610–616. [PubMed] [Google Scholar]
  • Rougier T., Drouineau H., Dumoulin N., Faure T., Deffuant G., Rochard E., Lambert P., 2014, The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution. Ecol. Modelling 283, 31–44. [CrossRef] [Google Scholar]
  • Rougier T., Lambert P., Drouineau H., Girardin M., Castelnaud G., Carry L., 2012, Collapse of Allis shad, Alosa alosa, in the Gironde system (southwest France): environmental change, fishing mortality, or Allee effect? ICES J. Mar. Sci. 69, 1802–1811. [Google Scholar]
  • Sabatie R., Bagliniere J.L., 2001, Some ecobiological traits in Morrocan shads; A cultural and socio-economic value interest which has disappeared. Bull. Fr. Pech. Piscic. 362/363, 903–917. [CrossRef] [EDP Sciences] [Google Scholar]
  • Savoy T., Crecco V., 1988, The timing and significance of density-dependant and density-independant mortality of American shad Alosa sapidissima. Fish. Bull. 88, 467–482. [Google Scholar]
  • Shelford V.E., 1931, Some Concepts of Bioecology. Ecology 12, 455–467. [CrossRef] [Google Scholar]
  • Souchon Y., Tissot L., 2012, Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowl. Manag. Aquat. Ecosyst. 405, 10.1051/kmae/2012008. [Google Scholar]
  • Stratoudakis Y., Mateus C.S., Quintella B.R., Antunes C., Raposo de Almeida P., 2016, Exploited anadromous fish in Portugal: Suggested direction for conservation and management. Mar. Policy 73, 92–99. [CrossRef] [Google Scholar]
  • Taverny C., 1991, Contribution à la connaissance de la dynamique des populations d’aloses (Alosa alosa et Alosa fallax) dans le système fluvio-estuarien de la Gironde : pêche, biologie et écologie – Etude particulière de la dévalaison et de l’impact des activités humaines, Université de Bordeaux I, p. 451. [Google Scholar]
  • Taverny C., Belaud A., Elie P., Sabatie M.R., 2000a, Influence des activités humaines. In: Baglinière J.L., Elie P. (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.) : écobiologie et variabilité des populations. Paris, INRA - Cemagref, pp. 227–248. [Google Scholar]
  • Taverny C., Cassou-Leins J.J., Cassou-Leins F., Elie P., 2000b, De l’oeuf à l’adulte en mer. In: Baglinière J.L., Elie P. (Eds.), Les aloses (Alosa alosa et Alosa fallax spp.): écobiologie et variabilité des populations. Paris, INRA – CEMAGREF, pp. 93–124. [Google Scholar]
  • Teletchea F., Fontaine P., 2010, Comparison of early life-stage strategies in temperate freshwater fish species: trade-offs are directed towards first feeding of larvae in spring and early summer. J. Fish Biol. 77, 257–278. [CrossRef] [PubMed] [Google Scholar]
  • Therneau, T., 2015, A package for survival analysis in S. Version 2.38; http://CRAN.R-project.org/package=survival. [Google Scholar]
  • Thornton K.W., Lessem A.S., 1978, A temperature algorithm for modifying biological rates. Trans. Am. Fish. Soc. 107, 284–287. [CrossRef] [Google Scholar]
  • Walsh H.J., Settle L.R., Peters D.S., 2005, Early life history of blueback herring and alewife in the lower Roanoke River, North Carolina. Trans. Am. Fish. Soc. 134, 910–926. [CrossRef] [Google Scholar]
  • Wehrly K., Wang L., Mitro M.G., 2007, Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Trans. Am. Fish. Soc. 136, 365–374. [CrossRef] [Google Scholar]
  • Wiggins T.A., Bender T.R., Mudrak V.A., Coll J.A., 1985, The development, feeding, growth and survival of cultured American shad larvae through the transition from endogenous to exogenous nutrition. Prog. Fish-Cult. 47, 87–93. [CrossRef] [Google Scholar]
  • Ziegeweid J.R., Jennings C.A., Peterson D.L., 2008, Thermal maxima for juvenile shortnose sturgeon acclimated to different temperatures. Environ. Biol. Fish. 82, 299–307. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.