Free Access
Review
Issue
Aquat. Living Resour.
Volume 28, Number 2-4, April-December 2015
Page(s) 61 - 79
DOI https://doi.org/10.1051/alr/2015007
Published online 03 December 2015
  • Adaklı A., Taşbozan O., 2015. The Effects of Different Cycles of Starvation and Refeeding on Growth and Body Composition on European Sea Bass (Dicentrarchus labrax). Turk. J. Fish. Aquat. Sci. 15, 425–433. [Google Scholar]
  • Ahmed M.S., 2011. Population dynamic and fisheries management of Europen sea bass, Dicentrarchus labrax (f. Moronidae) from Bardawil lagoon, North Sinai, Egypt. Egypt J. Aquat. Biol. Fish 15, 1110–1131. [Google Scholar]
  • Alami-Durante H., Rouel M., Kentouri M., 2006. New insights into temperature-induced white muscle growth plasticity during Dicentrarchus labrax early life: a developmental and allometric study. Mar. Biol. 149, 1551–1565. [CrossRef] [Google Scholar]
  • Allegrucci G., Fortunato C., Sbordoni V., 1997. Genetic structure and allozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Mar. Biol. 128, 347–358. [CrossRef] [Google Scholar]
  • Aranda A., Sánchez-Vázquez F.J., Madrid J.A., 2001. Effect of short-term fasting on macronutrient self-selection in sea bass. Physiol. Behav. 73, 105–109. [CrossRef] [PubMed] [Google Scholar]
  • Arias A., 1980. Crecimiento, régimen alimentario y reproducción de la dorada (Sparus aurata L.) y del robalo (Dicentrarchus labrax L.) en los esteros de Cádiz. Inv. Pesq 44, 59–83. [Google Scholar]
  • Asturiano J.F., Sorbera L.A., Ramos J., Kime D.E., Carrillo M., Zanuy S., 2002. Group-synchronous ovarian development, spawning and spermiation in the European sea bass (Dicentrarchus labrax L.) could be regulated by shifts in gonadal steroidogenesis. Sci. Mar. 66, 273–282. [Google Scholar]
  • Asturiano J.F., Sorbera L.A., Ramos J., Kime D.E., Carrilo M., Zanuy S., 2000. Hormonal regulation of the European sea bass reproductive cycle: an individualized female approach. J. Fish Biol. 56, 1155–1172. [CrossRef] [Google Scholar]
  • Ayala M.D., López-Albors O., Gil F., Garcıa-Alcázar A., Abellán E., Alarcón J.A., Álvarez M.C., Ramırez-Zarzosa G., Moreno F., 2001. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 202, 359–370. [CrossRef] [Google Scholar]
  • Ayala M., López Albors O., García Alcázar A., Abellán E., Latorre R., Vázquez J., Ramirez Zarzosa G., Martínez F.J., Gil F., 2003. Effect of two thermal regimes on the muscle growth dynamics of sea bass larvae, Dicentrarchus labrax L. Anat. Histol. Embryol. 32, 271–275. [CrossRef] [PubMed] [Google Scholar]
  • Azzaydi M., Martínez F.J., Zamora S., Sánchez-Vázquez F.J., Madrid J.A., 2000. The influence of nocturnal vs. diurnal feeding under winter conditions on growth and feed conversion of European sea bass (Dicentrarchus labrax, L.). Aquaculture 182, 329–338. [CrossRef] [Google Scholar]
  • Bagdonas K., Nika N., Bristow G., Jankauskiene R., Salyte A., Kontautas A., 2011. Short communication First record of Dicentrarchus labrax (Linnaeus, 1758) from the southeastern Baltic Sea (Lithuania). J. Appl. Ichthyol. 1, 2. [Google Scholar]
  • Bahri-Sfar L., Lemaire C., Hassine O.K.B., Bonhomme F., 2000. Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. B Biol. Sci. 267, 929–935. [CrossRef] [Google Scholar]
  • Barnabé G., 1990. Rearing Bass and Gilthead Bream, in: Aquaculture. pp. 647–686. [Google Scholar]
  • Barnabé G., 1976. Contribution à la connaissance de la biologie du loup, Dicentrarchus labrax L. (Serranidae) de la région de Sète. Thèse Doct. D’État, Université du Languedoc, Montpellier. [Google Scholar]
  • Barnabé G., Boulineau-Coatanea F., Rene F., 1976. Chronologie de la morphogenèse chez le loup ou bar Dicentrarchus labrax (L.) (Pisces, Serranidae) obtenu par reproduction artificielle. Aquaculture 8, 351–363. [CrossRef] [Google Scholar]
  • Bégout Anras M.-L., Lagardère J.-P., Lafaye J.-Y., 1997. Diel activity rhythm of seabass tracked in a natural environment: group effects on swimming patterns and amplitudes. Can. J. Fish. Aquat. Sci. 54, 162–168. [CrossRef] [Google Scholar]
  • Bégout Anras M.-L., 1995. Demand-feeding behaviour of sea bass kept in ponds: diel and seasonal patterns, and influences of environmental factors. Aquac. Int. 3, 186–195. [CrossRef] [Google Scholar]
  • Benhaïm D., Bégout M.-L., Péan S., Brisset B., Leguay D., Chatain B., 2012. Effect of fasting on self-feeding activity in juvenile sea bass (Dicentrarchus labrax). Appl. Anim. Behav. Sci. 136, 63–73. [CrossRef] [Google Scholar]
  • Bertignac M., 1987. L’exploitation du bar (Dicentrarchus labrax) dans le Morbras (Bretagne Sud). Thèse École Nationale Supérieure Agronomique, Laboratoire de biologie halieutique. [Google Scholar]
  • Blázquez M., Felip A., Zanuy S., Carrillo M., Piferrer F., 2001. Critical period of androgen-inducible sex differentiation in a teleost fish, the European sea bass. J. Fish Biol. 58, 342–358. [CrossRef] [Google Scholar]
  • Blázquez M., Zanuy S., Carillo M., Piferrer F., 1998. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 281, 207–216. [CrossRef] [Google Scholar]
  • Bou Ain A., 1977. Contribution Al, etude morphologique anatomique et biologique de Dicentrarchus labrax (Linne, 1758) et Dicentrarchus punctatus (Bloch, 1792) des coles Tunisiennes. Thèse Université de Tunis. [Google Scholar]
  • Boujard T., Gélineau A., Covès D., Corraze G., Dutto G., Gasset E., Kaushik S., 2004. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 231, 529–545. [CrossRef] [Google Scholar]
  • Boulineau-Coatanea F., 1969. Contribution à l’étude biologique du bar Dicentrarchus labrax (Linné). Thèse Fac. Sciences, Univ. Paris. [Google Scholar]
  • Brett J.R., Groves T.D.D., 1979. Physiological Energetics. in: Fish Physiology, Bioenergetics and Growth, Vol. III. Hoar W.S., Randall D.J., Brett J.R., eds. Academic Press, NY. pp. 279–352. [Google Scholar]
  • Brown J.H., Gillooly J.F., Allen A.P., Savage V.M., West G.B., 2004. Toward a metabolic theory of ecology. Ecology 85, 1771–1789. [CrossRef] [Google Scholar]
  • Bruslé J., Roblin C., 1984. Sexualité du loup Dicentrarchus labrax en Condition d’élevage Contrôlé. L’Aquaculture Bar Sparidés 33–43. [Google Scholar]
  • Cabral H., Costa M.J., 2001. Abundance, feeding ecology and growth of 0-group sea bass, Dicentrarchus labrax, within the nursery areas of the Tagus estuary. J. Mar. Biol. Assoc. UK 81, 679–682. [Google Scholar]
  • Cahu C., Zambonino J.-L., 2007. Ontogenèse des fonctions digestives et besoins nutritionnels chez les larves de poissons marins. Cybium 31, 217–226. [Google Scholar]
  • Cardoso J.F.M.F., Freitas V., Quilez I., Jouta J., Witte J.I., Van Der Veer H.W., 2015. The European sea bass Dicentrarchus labrax in the Dutch Wadden Sea: from visitor to resident species. J. Mar. Biol. Assoc. UK 95, 839–850. [CrossRef] [Google Scholar]
  • Carrillo M., Espigares F., Felip A., Escobar S., Molés G., Rodríguez R., Alvarado M.V., Gómez A., Zanuy S., 2015. Updating control of puberty in male European sea bass: A holistic approach. Gen. Comp. Endocrinol. 221, 42–53. [CrossRef] [PubMed] [Google Scholar]
  • Carrillo M., Zanuy S., Felip A., Bayarri M.J., Molés G., Gómez A., 2009. Hormonal and environmental control of puberty in perciform fish. Ann. N. Y. Acad. Sci. 1163, 49–59. [CrossRef] [PubMed] [Google Scholar]
  • Catalán I.A., Olivar M.P., Berdalet E., 2015. Comparison of biochemical, histological and morphological response of muscle-based condition indices to varying food levels in pre-flexion Dicentrarchus labrax (L.) larvae. bioRxiv doi: http://dx.doi.org/10.1101/023630 [Google Scholar]
  • Cerdá J., Carrillo M., Zanuy S., Ramos J., 1994a. Effect of food ration on estrogen and vitellogenin plasma levels, fecundity and larval survival in captive sea bass, Dicentrarchus labrax: preliminary observations. Aquat. Living Resour. 7, 255–266. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cerdá J., Carrillo M., Zanuy S., Ramos J., de la Higuera M., 1994b. Influence of nutritional composition of diet on sea bass, Dicentrarchus labrax L., reproductive performance and egg and larval quality. Aquaculture 128, 345–361. [CrossRef] [Google Scholar]
  • Cerezo Valverde J., López P.M., de Costa Ruiz J., 2005. Effect of periodical water current on the phasing of demand feeding rhythms in sea bass (Dicentrarchus labrax L.). Physiol. Behav. 85, 394–403. [CrossRef] [PubMed] [Google Scholar]
  • Chapelle A., Lazure P., Ménesguen A., 1994. Modelling eutrophication events in a coastal ecosystem. Sensitivity analysis. Estuar. Coast. Shelf Sci. 39, 529–548. [CrossRef] [Google Scholar]
  • Chatelier A., McKenzie D.J., Claireaux G., 2005. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol. 147, 855–862. [CrossRef] [Google Scholar]
  • Christensen V., Walters C.J., 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139. [CrossRef] [Google Scholar]
  • Claireaux G., Couturier C., Groison A.-L., 2006. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J. Exp. Biol. 209, 3420–3428. [CrossRef] [PubMed] [Google Scholar]
  • Claireaux G., Lagardère J.-P., 1999. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 42, 157–168. [CrossRef] [Google Scholar]
  • Colman J.E., Pawson M.G., Holmen J., Haugen T.O., 2008. European Sea Bass in the North Sea: Past, Present and Future Status, Use and Management Challenges, in: Global Challenges in Recreational Fisheries. Øystein Aas, Oxford, UK. [Google Scholar]
  • Conides A.J., Glamuzina B., 2002. Study on the effects of rearing density, temperature and salinity on hatching performance of the European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquac. Int. 9, 217–224. [CrossRef] [Google Scholar]
  • Coscia I., Desmarais E., Guinand B., Mariani S., 2012. Phylogeography of European sea bass in the north-east Atlantic: a correction and reanalysis of the mitochondrial DNA data from Coscia & Mariani (2011). Biol. J. Linn. Soc. 106, 455–458. [CrossRef] [Google Scholar]
  • Costa C., Vandeputte M., Antonucci F., Boglione C., Menesatti P., Cenadelli S., Parati K., Chavanne H., Chatain B., 2010. Genetic and environmental influences on shape variation in the European sea bass (Dicentrarchus labrax). Biol. J. Linn. Soc. 101, 427–436. [CrossRef] [Google Scholar]
  • Cucchi P., Sucré E., Santos R., Leclère J., Charmantier G., Castille R., 2012. Embryonic development of the sea bass Dicentrarchus labrax. Helgol. Mar. Res. 66, 199–209. [CrossRef] [Google Scholar]
  • Daewel U., Schrum C., 2013. Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II: model description and validation. J. Mar. Syst. 119, 30–49. [CrossRef] [Google Scholar]
  • Dendrinos P., Thorpe J.P., 1985. Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture 49, 333–358. [CrossRef] [Google Scholar]
  • Devauchelle N., Coves D., 1988. The characteristics of sea bass (Dicentrarchus labrax) eggs: description, biochemical composition and hatching performances. Aquat. Living Resour. 1, 223–230. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dorel D., 1986. Poissons de l’Atlantique Nord-Est: relations taille-poids. http://archimer.ifremer.fr/doc/00000/1289/. [Google Scholar]
  • Dupont-Prinet A., Chatain B., Grima L., Vandeputte M., Claireaux G., McKenzie D.J., 2010. Physiological mechanisms underlying a trade-off between growth rate and tolerance of feed deprivation in the European sea bass (Dicentrarchus labrax). J. Exp. Biol. 213, 1143–1152. [CrossRef] [PubMed] [Google Scholar]
  • Durant J.M., Hjermann D.Ø., Ottersen G., Stenseth N.C., 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33(3), 271–283. [CrossRef] [Google Scholar]
  • Echevarrıa G., Martınez-Bebiá M., Zamora S., 1997. Evolution of biometric indices and plasma metabolites during prolonged starvation in European sea bass (Dicentrarchus labrax, L.). Comp. Biochem. Physiol. A Physiol. 118, 111–123. [CrossRef] [Google Scholar]
  • Edwards K.P., Barciela R., Butenschön M., 2012. Validation of the NEMO-ERSEM operational ecosystem model for the North West European Continental Shelf. Ocean Sci. 8, 983–1000. [CrossRef] [Google Scholar]
  • Escobar S., Felip A., Salah M., Zanuy S., Carrillo M., 2014. Long-term feeding restriction in prepubertal male sea bass (Dicentrarchus labrax L.) increases the number of apoptotic cells in the testis and affects the onset of puberty and certain reproductive parameters. Aquaculture 433, 504–512. [CrossRef] [Google Scholar]
  • Espigares F., Rocha A., Molés G., Gómez A., Carrillo M., Zanuy S., 2015. New Insights into the Factors Mediating the Onset of Puberty in Sea Bass. Gen. Comp. Endocrinol. (in press), doi:10.1016/j.ygcen.2015.08.013. [Google Scholar]
  • European Commission, 2015. Commission implementing regulation (EU) 2015/111. [Google Scholar]
  • Ferrari S., Chatain B., Cousin X., Leguay D., Vergnet A., Vidal M.-O., Vandeputte M., Bégout M.-L., 2014. Early individual electronic identification of sea bass using RFID microtags: A first example of early phenotyping of sex-related growth. Aquaculture 426, 165–171. [CrossRef] [Google Scholar]
  • Friedrichs M.A., Dusenberry J.A., Anderson L.A., Armstrong R.A., Chai F., Christian J.R., Doney S.C., Dunne J., Fujii M., Hood R., 2007. Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. J. Geophys. Res. Oceans 1978–2012 112. [Google Scholar]
  • Fritsch M., Morizur Y., Lambert E., Bonhomme F., Guinand B., 2007. Assessment of sea bass (Dicentrarchus labrax, L.) stock delimitation in the Bay of Biscay and the English Channel based on mark-recapture and genetic data. Fish. Res. 83, 123–132. [CrossRef] [Google Scholar]
  • García de León F., Canonne M., Quillet E., Bonhomme F., Chatain B., 1998. The application of microsatellite markers to breeding programmes in the sea bass, Dicentrarchus labrax. Aquaculture 159, 303–316. [CrossRef] [Google Scholar]
  • Gardeur J.-N., Lemarié G., Coves D., Boujard T., 2001. Typology of individual growth in sea bass (Dicentrarchus labrax). Aquat. Living Resour. 14, 223–231. [CrossRef] [EDP Sciences] [Google Scholar]
  • Georgakopoulou E., Sfakianakis D.G., Kouttouki S., Divanach P., Kentouri M., Koumoundouros G., 2007. The influence of temperature during early life on phenotypic expression at later ontogenetic stages in sea bass. J. Fish Biol. 70, 278–291. [CrossRef] [Google Scholar]
  • Georgalas V., Malavasi S., Franzoi P., Torricelli P., 2007. Swimming activity and feeding behaviour of larval European sea bass (Dicentrarchus labrax L): Effects of ontogeny and increasing food density. Aquaculture 264, 418–427. [CrossRef] [Google Scholar]
  • Girin M., 1975. La ration alimentaire dans l’élevage larvaire du bar, Dicentrarchus labrax (L.), in: 10th European Symposium on Marine Biology. Centre Océanologique de Bretagne, pp. 427–444. [Google Scholar]
  • Gorshkov S., Gorshkova G., Meiri I., Gordin H., 2004. Culture performance of different strains and crosses of the European sea bass (Dicentrarchus labrax) reared under controlled conditions at Eilat, Israel. J. Appl. Ichthyol. 20, 194–203. [CrossRef] [Google Scholar]
  • Gravier R., 1961. Les bars (loups) du Maroc atlantique Morone labrax (Linné) et Morone punctata (Bloch). Rev. Trav. Inst. Pêch. Marit. 25, 281–292. [Google Scholar]
  • Grima L., Vandeputte M., Ruelle F., Vergnet A., Mambrini M., Chatain B., 2010. In search for indirect criteria to improve residual feed intake in sea bass (Dicentrarchus labrax): Part I: Phenotypic relationship between residual feed intake and body weight variations during feed deprivation and re-feeding periods. Aquaculture 300, 50–58. [CrossRef] [Google Scholar]
  • Grimm V., Railsback S.F., 2013. Individual-based modeling and ecology. Princeton university press. [Google Scholar]
  • Hilborn R., 1990. Determination of fish movement patterns from tag recoveries using maximum likelihood estimators. Can. J. Fish. Aquat. Sci. 47, 635–643. [CrossRef] [Google Scholar]
  • Hoai Thong L., 1970. Contribution à l’étude des bars de la région des Sables d’Olonne. Trav Fac Sc Univ Rennes Sér Océan. Biol 3, 39–68. [Google Scholar]
  • Humston R., Olson D.B., Ault J.S., 2004. Behavioral Assumptions in Models of Fish Movement and Their Influence on Population Dynamics. Trans. Am. Fish. Soc. 133, 1304–1328. [CrossRef] [Google Scholar]
  • Huret M., Petitgas P., Woillez M., 2010. Dispersal kernels and their drivers captured with a hydrodynamic model and spatial indices: a case study on anchovy (Engraulis encrasicolus) early life stages in the Bay of Biscay. Prog. Oceanogr. 87, 6–17. [CrossRef] [Google Scholar]
  • ICES, 2015. Report of the Working Group on Celtic Seas Ecoregion (WGCSE). 13-22 May. Copenhagen, Denmark. [Google Scholar]
  • ICES, 2012. Report of the Working Group on Assessment of New MoU Species (WGNEW). [Google Scholar]
  • Iizawa M., 1983. Ecologie trophique des larves du loup Dicentrarchus labrax (L.) en élevage. Thèse USTL, Montpellier. [Google Scholar]
  • Ilestad A.-M., Haugen T.O., Colman J.E., 2012. Differential habitat use between adult European sea bass and North Atlantic cod in the inner Oslo fjord: influence of abiotic environmental variables, in: McKenzie J., Parsons B., Seitz A., Keller Kopf R., Mesa M., Phelps Q., (Eds.) Advances in Fish Tagging and Marking Technology. [Google Scholar]
  • Jennings S., Lancaster J.E., Ryland J.S., Shackley S.E., 1991. The age structure and growth dynamics of young-of-the-year bass, Dicentrarchus labrax, populations. J. Mar. Biol. Assoc. UK 71, 799–810. [CrossRef] [Google Scholar]
  • Jennings S., Pawson M.G., 1992. The origin and recruitment of bass, Dicentrarchus labrax, larvae to nursery areas. J. Mar. Biol. Assoc. UK 72, 199–212. [CrossRef] [Google Scholar]
  • Jennings S., Pawson M.G., 1991. The development of bass, Dicentrarchus labrax, eggs in relation to temperature. J. Mar. Biol. Assoc. UK 71, 107–116. [CrossRef] [Google Scholar]
  • Jobling M., 1994. Fish bioenergetics. Chapman & Hall. [Google Scholar]
  • Johnson D.W., Katavić I., 1986. Survival and growth of sea bass (Dicentrarchus labrax) larvae as influenced by temperature, salinity, and delayed initial feeding. Aquaculture 52, 11–19. [CrossRef] [Google Scholar]
  • Kara M.H., Chaoui L., 1998. Croissance du loup Dicentrarchus labrax (L.) dans la Lagune du Mellah (Algerie). Rapp. Comm. Int. Mer Médit 35, 550–551. [Google Scholar]
  • Katavić I., Jug-Dujaković J., Glamuzina B., 1989. Cannibalism as a factor affecting the survival of intensively cultured sea bass (Dicentrarchus labrax) fingerlings. Aquaculture 77, 135–143. [CrossRef] [Google Scholar]
  • Kelley D., 2002. Abundance, growth and first-winter survival of young bass in nurseries of south-west England. J. Mar. Biol. Assoc. UK 82, 307–319. [CrossRef] [Google Scholar]
  • Kelley D., 1986. Bass nurseries on the west coast of the UK. J. Mar. Biol. Assoc. UK 66, 439–464. [CrossRef] [Google Scholar]
  • Kelley D.F., 1988. Age determination in bass and assessment of growth and year-class strength. J. Mar. Biol. Assoc. UK 68, 179–214. [CrossRef] [Google Scholar]
  • Kennedy M., Fitzmaurice P., 1972. The biology of the bass, Dicentrarchus labrax, in Irish waters. J. Mar. Biol. Assoc. UK 52, 557–597. [CrossRef] [Google Scholar]
  • Killen S.S., Marras S., McKenzie D.J., 2011. Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J. Anim. Ecol. 80, 1024–1033. [CrossRef] [PubMed] [Google Scholar]
  • Kooijman S.A.L.M., 2010. Dynamic Energy Budget Theory for Metabolic Organisation, 3rd ed. Cambridge University Press. [Google Scholar]
  • Koumoundouros G., Divanach P., Anezaki L., Kentouri M., 2001. Temperature-induced ontogenetic plasticity in sea bass (Dicentrarchus labrax). Mar. Biol. 139, 817–830. [CrossRef] [Google Scholar]
  • Koumoundouros G., Sfakianakis D.G., Divanach P., Kentouri M., 2002. Effect of temperature on swimming performance of sea bass juveniles. J. Fish Biol. 60, 923–932. [CrossRef] [Google Scholar]
  • Laffaille P., Lefeuvre J.-C., Schricke M.-T., Feunteun E., 2001. Feeding ecology of o-group sea bass, Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries 24, 116–125. [CrossRef] [Google Scholar]
  • Lanari D., Poli B.M., Ballestrazzi R., Lupi P., D’Agaro E., Mecatti M., 1999. The effects of dietary fat and NFE levels on growing European sea bass (Dicentrarchus labrax L.). Growth rate, body and fillet composition, carcass traits and nutrient retention efficiency. Aquaculture 179, 351–364. [CrossRef] [Google Scholar]
  • Lazure P., Dumas F., 2008. An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250. [CrossRef] [Google Scholar]
  • Leal E., Fernández-Durán B., Guillot R., Ríos D., Cerdá-Reverter J.M., 2011. Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): a self-feeding approach. J. Comp. Physiol. B 181, 1035–1044. [CrossRef] [PubMed] [Google Scholar]
  • Lehuta S., Mahévas S., Le Floc’h P.,Petitgas P., Rose K., 2013a. A simulation-based approach to assess sensitivity and robustness of fisheries management indicators for the pelagic fishery in the Bay of Biscay. Can. J. Fish. Aquat. Sci. 70, 1741–1756. [CrossRef] [Google Scholar]
  • Lehuta S., Petitgas P., Mahévas S., Huret M., Vermard Y., Uriarte A., Record N.R., 2013b. Selection and validation of a complex fishery model using an uncertainty hierarchy. Fish. Res. 143, 57–66. [CrossRef] [Google Scholar]
  • Leis J.M., Balma P., Ricoux R., Galzin R., 2012. Ontogeny of swimming ability in the European sea bass, Dicentrarchus labrax (L.)(Teleostei: Moronidae). Mar. Biol. Res. 8, 265–272. [CrossRef] [Google Scholar]
  • Lemaire C., Allegrucci G., Naciri M., Bahri-Sfar L., Kara H., Bonhomme F., 2000. Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol. Ecol. 9, 457–467. [Google Scholar]
  • Le Mao P., 1985. Peuplements piscicoles et teuthologiques du bassin maritime de la Rance: impact de l’aménagement marémoteur. Thèse Université de Rennes1/ENSA Rennes-Ecole Nationale Supérieure Agronomique de Rennes. [Google Scholar]
  • Lika K., Nisbet R.M., 2000. A dynamic energy budget model based on partitioning of net production. J. Math. Biol. 41, 361–386. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Luna-Acosta A., Lefrançois C., Millot S., Chatain B., Bégout M.-L., 2011. Physiological response in different strains of sea bass (Dicentrarchus labrax): swimming and aerobic metabolic capacities. Aquaculture 317, 162–167. [CrossRef] [Google Scholar]
  • Lupatsch I., Kissil G.W., Sklan D., 2003. Comparison of energy and protein efficiency among three fish species gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax) and white grouper (Epinephelus aeneus): energy expenditure for protein and lipid deposition. Aquaculture 225, 175–189. [CrossRef] [Google Scholar]
  • Lupatsch I., Kissil G.W., Sklan D., 2001. Optimization of feeding regimes for European sea bass Dicentrarchus labrax: a factorial approach. Aquaculture 202, 289–302. [CrossRef] [Google Scholar]
  • MacCall A.D., 1990. Dynamic geography of marine fish populations. Washington Sea Grant Program Seattle, WA. [Google Scholar]
  • Mahévas S., Iooss B., 2013. Grilles de sélection d’une méthode d’analyse de sensibilité globale, in: Analyse de Sensibilité et Exploration de Modèles: Application Aux Sciences de La Nature et de L’environnement. Faivre R., Ioos B., Makowski D., Mahévas S., Monod H., p. 352. [Google Scholar]
  • Mahévas S., Pelletier D., 2004. ISIS-Fish, a generic and spatially explicit simulation tool for evaluating the impact of management measures on fisheries dynamics. Ecol. Model. 171, 65–84. [CrossRef] [Google Scholar]
  • Mahjoub M.-S., Kumar R., Souissi S., Schmitt F.G., Hwang J.-S., 2012. Turbulence effects on the feeding dynamics in European sea bass (Dicentrarchus labrax) larvae. J. Exp. Mar. Biol. Ecol. 416, 61–67. [CrossRef] [Google Scholar]
  • Marangos C., Yagi H., Ceccaldi H.J., 1986. Rôle de la température et de la salinité sur le taux de survie et la morphogenèse au cours du développement embryonnaire chez les oeufs du loup de mer Dicentrarchus labrax (Linnaeus, 1758) (Pisces, Teleostei, Serranidae). Aquaculture 54, 287–300. [CrossRef] [Google Scholar]
  • Marras S., Claireaux G., McKenzie D.J., Nelson J.A., 2010. Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax. J. Exp. Biol. 213, 26–32. [CrossRef] [PubMed] [Google Scholar]
  • Martinho F., Leitão R., Neto J.M., Cabral H., Lagardère F., Pardal M.A., 2008. Estuarine colonization, population structure and nursery functioning for 0-group sea bass (Dicentrarchus labrax), flounder (Platichthys flesus) and sole (Solea solea) in a mesotidal temperate estuary. J. Appl. Ichthyol. 24, 229–237. [CrossRef] [Google Scholar]
  • Maury O., Faugeras B., Shin Y.-J., Poggiale J.-C., Ari T.B., Marsac F., 2007. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog. Oceanogr. 74, 479–499. [CrossRef] [Google Scholar]
  • Mayer I., Shackley S.E., Ryland J.S., 1988. Aspects of the reproductive biology of the bass, Dicentrarchus labrax LI An histological and histochemical study of oocyte development. J. Fish Biol. 33, 609–622. [CrossRef] [Google Scholar]
  • Mayer I., Shackley S.E., Witthames P.R., 1990. Aspects of the reproductive biology of the bass, Dicentrarchus labrax L. II. Fecundity and pattern of oocyte development. J. Fish Biol. 36, 141–148. [Google Scholar]
  • McKenzie D.J., Vergnet A., Chatain B., Vandeputte M., Desmarais E., Steffensen J.F., Guinand B., 2014. Physiological mechanisms underlying individual variation in tolerance of food deprivation in juvenile European sea bass, Dicentrarchus labrax. J. Exp. Biol. 217, 3283–3292. [CrossRef] [PubMed] [Google Scholar]
  • Mehanna S.F., El-Aiatt A., Ameran M., Salem M., 2010. Population dynamics and fisheries regulations for the European seabass Dicentrarchus labrax (moronidae) at Bardawil lagoon, Egypt, in: 3rd International Conference on Fisheries and Aquaculture. [Google Scholar]
  • Mellor G.L., 1998. Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ 08544-0710. [Google Scholar]
  • Miller T.J., 2007. Contribution of individual-based coupled physical-biological models to understanding recruitment in marine fish populations. Mar. Ecol. Prog. Ser. 347, 127–138. [CrossRef] [Google Scholar]
  • Millot S., 2008. Domestication, sélection et comportement du bar: Variabilité des aptitudes comportementales et de la tolérance au stress de groupes génétiquement distincts de bar, Dicentrarchus labrax. Thèse Univ. La Rochelle. [Google Scholar]
  • Mylonas C.C., Anezaki L., Divanach P., Zanuy S., Piferrer F., Ron B., Peduel A., Ben Atia I., Gorshkov S., Tandler A., 2005. Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. J. Fish Biol. 67, 652–668. [CrossRef] [Google Scholar]
  • Mylonas C.C., Sigelaki I., Divanach P., Mananos E., Carrillo M., Afonso-Polyviou A., 2003. Multiple spawning and egg quality of individual European sea bass (Dicentrarchus labrax) females after repeated injections of GnRHa. Aquaculture 221, 605–620. [CrossRef] [Google Scholar]
  • Naciri M., Lemaire C., Borsa P., Bonhomme F., 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J. Hered. 90, 591–596. [CrossRef] [Google Scholar]
  • Navarro-Martín L., Blázquez M., Viñas J., Joly S., Piferrer F., 2009. Balancing the effects of rearing at low temperature during early development on sex ratios, growth and maturation in the European sea bass (Dicentrarchus labrax).: Limitations and opportunities for the production of highly female-biased stocks. Aquaculture 296, 347–358. [CrossRef] [Google Scholar]
  • Navas J.M., Bruce M., Thrush M., Farndale B.M., Bromage N., Zanuy S., Carrillo M., Bell J.G., Ramos J., 1997. The impact of seasonal alteration in the lipid composition of broodstock diets on egg quality in the European sea bass. J. Fish Biol. 51, 760–773. [CrossRef] [Google Scholar]
  • Pastoureaud A., 1991. Influence of starvation at low temperatures on utilization of energy reserves, appetite recovery and growth character in sea bass, Dicentrarchus labrax. Aquaculture 99, 167–178. [CrossRef] [Google Scholar]
  • Pavlidis M., Koumoundouros G., Sterioti A., Somarakis S., Divanach P., Kentouri M., 2000. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 287, 225–232. [CrossRef] [PubMed] [Google Scholar]
  • Pawson M.G., Pickett G.D., 1996. The annual pattern of condition and maturity in bass, Dicentrarchus labrax, in waters around England and Wales. J. Mar. Biol. Assoc. UK 76, 107–125. [CrossRef] [Google Scholar]
  • Pawson M.G., Pickett G.D., Kelley D.F., 1987. The distribution and migrations of bass, Dicentrarchus labrax L., in waters around England and Wales as shown by tagging. J. Mar. Biol. Assoc. UK 67, 183–217. [CrossRef] [Google Scholar]
  • Pawson M.G., Pickett G.D., Leballeur J., Brown M., Fritsch M., 2007. Migrations, fishery interactions, and management units of sea bass (Dicentrarchus labrax) in Northwest Europe. ICES J. Mar. Sci. 64, 332–345. [CrossRef] [Google Scholar]
  • Pawson M.G., Pickett G.D., Witthames P.R., 2000. The influence of temperature on the onset of first maturity in sea bass. J. Fish Biol. 56, 319–327. [CrossRef] [Google Scholar]
  • Pecquerie L., Petitgas P., Kooijman S.A., 2009. Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration. J. Sea Res. 62, 93–105. [CrossRef] [Google Scholar]
  • Pelletier D., Mahevas S., Drouineau H., Vermard Y., Thebaud O., Guyader O., Poussin B., 2009. Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using ISIS-Fish. Ecol. Model. 220, 1013–1033. [CrossRef] [Google Scholar]
  • Peres H., Oliva-Teles A., 2005. Protein and energy metabolism of European seabass (Dicentrarchus labrax) juveniles and estimation of maintenance requirements. Fish Physiol. Biochem. 31, 23–31. [CrossRef] [Google Scholar]
  • Peres H., Oliva-Teles A., 1999a. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170, 337–348. [CrossRef] [Google Scholar]
  • Peres H., Oliva-Teles A., 1999b. Effect of dietary lipid level on growth performance and feed utilization by European sea bass juveniles (Dicentrarchus labrax). Aquaculture 179, 325–334. [CrossRef] [Google Scholar]
  • Pérez-Jiménez A., Guedes M.J., Morales A.E., Oliva-Teles A., 2007. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture 265, 325–335. [Google Scholar]
  • Person-Le Ruyet J., Mahe K., Le Bayon N., Le Delliou H., 2004. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237, 269–280. [CrossRef] [Google Scholar]
  • Petitgas P., Rijnsdorp A.D., Dickey-Collas M., Engelhard G.H., Peck M.A., Pinnegar J.K., Drinkwater K., Huret M., Nash R.D.M., 2013. Impacts of climate change on the complex life cycles of fish. Fish. Oceanogr. 22, 121–139. [CrossRef] [Google Scholar]
  • Pichavant K., Person-Le-Ruyet J., Bayon N.L., Severe A., Roux A.L., Boeuf G., 2001. Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol. 59, 875–883. [CrossRef] [Google Scholar]
  • Pickett G.D., Kelley D.F., Pawson M.G., 2004. The patterns of recruitment of sea bass, Dicentrarchus labrax L. from nursery areas in England and Wales and implications for fisheries management. Fish. Res. 68, 329–342. [CrossRef] [Google Scholar]
  • Pickett G.D., Pawson M.G., 1994. Sea Bass. Biology, Exploitation and Conservation, Chapman & Hall. ed. London. [Google Scholar]
  • Prat F., Zanuy S., Bromage N., Carrillo M., 1999. Effects of constant short and long photoperiod regimes on the spawning performance and sex steroid levels of female and male sea bass. J. Fish Biol. 54, 125–137. [CrossRef] [Google Scholar]
  • Prat F., Zanuy S., Carrillo M., De Mones A., Fostier A., 1990. Seasonal changes in plasma levels of gonadal steroids of sea bass, Dicentrarchus labrax L. Gen. Comp. Endocrinol. 78, 361–373. [CrossRef] [PubMed] [Google Scholar]
  • Punt A.E., Hilborn R.A.Y., 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 7, 35–63. [CrossRef] [Google Scholar]
  • Quayle V.A., Righton D., Hetherington S., Pickett G., 2009. Observations of the behaviour of European sea bass (Dicentrarchus labrax) in the North Sea, in: Tagging and Tracking of Marine Animals with Electronic Devices. Springer, pp. 103–119. [Google Scholar]
  • Quéré N., Desmarais E., Tsigenopoulos C.S., Belkhir K., Bonhomme F., Guinand B., 2012. Gene flow at major transitional areas in sea bass (Dicentrarchus labrax) and the possible emergence of a hybrid swarm. Ecol. Evol. 2, 3061–3078. [CrossRef] [PubMed] [Google Scholar]
  • Railsback S.F., Lamberson R.H., Harvey B.C., Duffy W.E., 1999. Movement rules for individual-based models of stream fish. Ecol. Model. 123, 73–89. [CrossRef] [Google Scholar]
  • Regner S., Dulčić J., 1994. Growth of sea bass, Dicentrarchus labrax, larval and juvenile stages and their otoliths under quasi-steady temperature conditions. Mar. Biol. 119, 169–177. [CrossRef] [Google Scholar]
  • Reynolds W.J., Lancaster J.E., Pawson M.G., 2003. Patterns of spawning and recruitment of sea bass to Bristol Channel nurseries in relation to the 1996 “Sea Empress” oil spill. J. Mar. Biol. Assoc. UK 83, 1163–1170. [CrossRef] [Google Scholar]
  • Roche H., Chaar K., Peres G., 1989. The effect of a gradual decrease in salinity on the significant constituents of tissue in the sea bass (Dicentrarchus labrax Pisces). Comp. Biochem. Physiol. A Physiol. 93, 785–789. [CrossRef] [Google Scholar]
  • Rodríguez L., Begtashi I., Zanuy S., Carrillo M., 2005. Long-term exposure to continuous light inhibits precocity in European male sea bass (Dicentrarchus labrax, L.): hormonal aspects. Gen. Comp. Endocrinol. 140, 116–125. [CrossRef] [PubMed] [Google Scholar]
  • Rodríguez R., Felip A., Cerqueira V., Hala E., Zanuy S., Carrillo M., 2012. Identification of a photolabile period for reducing sexual maturation in juvenile male sea bass (Dicentrarchus labrax) by means of a continuous light regime. Aquac. Int. 20, 1071–1083. [CrossRef] [Google Scholar]
  • Rodrıguez L., Zanuy S., Carrillo M., 2001. Influence of daylength on the age at first maturity and somatic growth in male sea bass (Dicentrarchus labrax, L.). Aquaculture 196, 159–175. [CrossRef] [Google Scholar]
  • Rønnestad I., Koven W., Tandler A., Harel M., Fyhn H.J., 1998. Utilisation of yolk fuels in developing eggs and larvae of European sea bass (Dicentrarchus labrax). Aquaculture 162, 157–170. [CrossRef] [Google Scholar]
  • Rubio V.C., Sánchez-Vázquez F.J., Madrid J.A., 2005. Effects of salinity on food intake and macronutrient selection in European sea bass. Physiol. Behav. 85, 333–339. [CrossRef] [PubMed] [Google Scholar]
  • Russell N.R., Fish J.D., Wootton R.J., 1996. Feeding and growth of juvenile sea bass: the effect of ration and temperature on growth rate and efficiency. J. Fish Biol. 49, 206–220. [CrossRef] [Google Scholar]
  • Saillant E., Chatain B., Menu B., Fauvel C., Vidal M.O., Fostier A., 2003a. Sexual differentiation and juvenile intersexuality in the European sea bass (Dicentrarchus labrax). J. Zool. 260, 53–63. [CrossRef] [Google Scholar]
  • Saillant E., Fostier A., Haffray P., Menu B., Chatain B., 2003b. Saline preferendum for the European sea bass, Dicentrarchus labrax, larvae and juveniles: effect of salinity on early development and sex determination. J. Exp. Mar. Biol. Ecol. 287, 103–117. [CrossRef] [Google Scholar]
  • Saillant E., Fostier A., Menu B., Haffray P., Chatain B., 2001. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202, 371–387. [CrossRef] [Google Scholar]
  • Sánchez-Vázquez F.J., Azzaydi M., Martínez F.J., Zamora S., Madrid J.A., 1998. Annual rhythms of demand-feeding activity in sea bass: evidence of a seasonal phase inversion of the diel feeding pattern. Chronobiol. Int. 15, 607–622. [CrossRef] [PubMed] [Google Scholar]
  • Schurmann H., Claireaux G., Chartois H., 1998. Changes in vertical distribution of sea bass (Dicentrarchus labrax L.) during a hypoxic episode, in: Advances in Invertebrates and Fish Telemetry. Springer, pp. 207–213. [Google Scholar]
  • Shchepetkin A.F., McWilliams J.C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9, 347–404. [CrossRef] [Google Scholar]
  • Shin Y.-J., Cury P., 2004. Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can. J. Fish. Aquat. Sci. 61, 414–431. [CrossRef] [Google Scholar]
  • Sinha A.K., Dasan A.F., Rasoloniriana R., Pipralia N., Blust R., De Boeck G., 2015. Hypo-osmotic stress-induced physiological and ion-osmoregulatory responses in European sea bass (Dicentrarchus labrax) are modulated differentially by nutritional status. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 181, 87–99. [CrossRef] [PubMed] [Google Scholar]
  • Souche E.L., Hellemans B., Babbucci M., MacAoidh E., Guinand B., Bargelloni L., Chistiakov D.A., Patarnello T., Bonhomme F., Martinsohn J.T., 2015. Range-wide population structure of European sea bass Dicentrarchus labrax. Biol. J. Linn. Soc. [Google Scholar]
  • Spitz J., Chouvelon T., Cardinaud M., Kostecki C., Lorance P., 2013. Prey preferences of adult sea bass Dicentrarchus labrax in the northeastern Atlantic: implications for bycatch of common dolphin Delphinus delphis. ICES J. Mar. Sci. 70, 452–461. [CrossRef] [Google Scholar]
  • Stirling H.P., 1977. Growth, food utilization and effect of social interaction in the European bass Dicentrarchus labrax. Mar. Biol. 40, 173–184. [CrossRef] [Google Scholar]
  • Stirling H.P., 1976. Effects of experimental feeding and starvation on the proximate composition of the European bass Dicentrarchus labrax. Mar. Biol. 34, 85–91. [CrossRef] [Google Scholar]
  • Stirling H.P., 1972. The proximate composition of the European bass, Dicentrarchus labrax (L.) from the Bay of Naples. J. Cons. 34, 357–364. [CrossRef] [Google Scholar]
  • Stock C.A., Alexander M.A., Bond N.A., Brander K.M., Cheung W.W., Curchitser E.N., Delworth T.L., Dunne J.P., Griffies S.M., Haltuch M.A., 2011. On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog. Oceanogr. 88, 1–27. [CrossRef] [Google Scholar]
  • Sureau D., Lagardère J.-P., 1991. Coupling of heart rate and locomotor activity in sole, Solea solea (L.), and bass, Dicentrarchus labrax (L.), in their natural environment by using ultrasonic telemetry. J. Fish Biol. 38, 399–405. [CrossRef] [Google Scholar]
  • Thetmeyer H., Waller U., Black K.D., Inselmann S., Rosenthal H., 1999. Growth of European sea bass (Dicentrarchus labrax L.) under hypoxic and oscillating oxygen conditions. Aquaculture 174, 355–367. [CrossRef] [Google Scholar]
  • Thompson B.M., Harrop R.T., 1987. The distribution and abundance of bass (Dicentrarchus labrax) eggs and larvae in the English Channel and southern North Sea. J. Mar. Biol. Assoc. UK 67, 263–274. [CrossRef] [Google Scholar]
  • Tine M., Kuhl H., Gagnaire P.-A., Louro B., Desmarais E., Martins R.S., Hecht J., Knaust F., Belkhir K., Klages S., 2014. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Commun. 5, 5770. [CrossRef] [Google Scholar]
  • Toledo Guedes K., Sánchez-Jerez P., González-Lorenzo G., Brito Hernández A., 2009. Detecting the degree of establishment of a non-indigenous species in coastal ecosystems: sea bass Dicentrarchus labrax escapes from sea cages in Canary Islands (Northeastern Central Atlantic). Hydrobiologia 623, 203–212. [CrossRef] [Google Scholar]
  • Tyler J., Rose K., 1994. Individual variability and spatial heterogeneity in fish population models. Rev. Fish Biol. Fish. 4, 91–123. [CrossRef] [Google Scholar]
  • Vandeputte M., Dupont-Nivet M., Chavanne H., Chatain B., 2007. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176, 1049–1057. [CrossRef] [PubMed] [Google Scholar]
  • Vandeputte M., Garouste R., Dupont-Nivet M., Haffray P., Vergnet A., Chavanne H., Laureau S., Ron T.B., Pagelson G., Mazorra C., 2014. Multi-site evaluation of the rearing performances of 5 wild populations of European sea bass (Dicentrarchus labrax). Aquaculture 424, 239–248. [CrossRef] [Google Scholar]
  • Vandeputte M., Quillet E., Chatain B., 2012. Are sex ratios in wild European sea bass (Dicentrarchus labrax) populations biased? Aquat. Living Resour. 25, 77–81. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vanderplancke G., Claireaux G., Quazuguel P., Madec L., Ferraresso S., Sévère A., Zambonino-Infante J.-L., Mazurais D., 2014. Hypoxic episode during the larval period has long-term effects on European sea bass juveniles (Dicentrarchus labrax). Mar. Biol. 1–10. [Google Scholar]
  • Varsamos S., Connes R., Diaz J.P., Barnabé G., Charmantier G., 2001. Ontogeny of osmoregulation in the European sea bass Dicentrarchus labrax L. Mar. Biol. 138, 909–915. [CrossRef] [Google Scholar]
  • Vermard Y., Marchal P., Mahévas S., Thébaud O., 2008. A dynamic model of the Bay of Biscay pelagic fleet simulating fishing trip choice: the response to the closure of the European anchovy (Engraulis encrasicolus) fishery in 2005. Can. J. Fish. Aquat. Sci. 65, 2444–2453. [CrossRef] [Google Scholar]
  • Villamizar N., García-Alcazar A., Sánchez-Vázquez F.J., 2009. Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292, 80–86. [CrossRef] [Google Scholar]
  • Villamizar N., Herlin M., López M.D., Sánchez-Vázquez F.J., 2012. Daily spawning and locomotor activity rhythms of European sea bass broodstock (Dicentrarchus labrax). Aquaculture 354, 117–120. [CrossRef] [Google Scholar]
  • Vinagre C., Madeira D., Narciso L., Cabral H.N., Diniz M., 2012. Effect of temperature on oxidative stress in fish: lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol. Indic. 23, 274–279. [CrossRef] [Google Scholar]
  • Vinagre C., Santos F.D., Cabral H.N., Costa M.J., 2009. Impact of climate and hydrology on juvenile fish recruitment towards estuarine nursery grounds in the context of climate change. Estuar. Coast. Shelf Sci. 85, 479–486. [CrossRef] [Google Scholar]
  • Werner F.E., Ito S.-I., Megrey B.A., Kishi M.J., 2007. Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling. Ecol. Model. 202, 211–223. [CrossRef] [Google Scholar]
  • Whipple S.J., Link J.S., Garrison L.P., Fogarty M.J., 2000. Models of predation and fishing mortality in aquatic ecosystems. Fish Fish. 1, 22–40. [CrossRef] [Google Scholar]
  • Winberg G.G., 1956. Rate of metabolism and food requirements of fishes. Fish Res. Bd. Can. Trans. Ser. 194, 1–202. [Google Scholar]
  • Yildirim Ş., Vardar H., 2015. The influence of a longer photoperiod on growth parameters of European sea bass Dicentrarchus labrax (Linnaeus, 1758) reared in sea cages. J. Appl. Ichthyol. 31, 100–105. [CrossRef] [Google Scholar]
  • Zambonino Infante J.L., Cahu C.L., 1999. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J. Nutr. 129, 1195–1200. [PubMed] [Google Scholar]
  • Zanuy S., Carrillo M., 1985. Annual cycles of growth, feeding rate, gross conversion efficiency and hematocrit levels of sea bass (Dicentrarchus labrax L.) adapted to two different osmotic media. Aquaculture 44, 11–25. [CrossRef] [Google Scholar]
  • Zanuy S., Carrillo M., Ruiz F., 1986. Delayed gametogenesis and spawning of sea bass (Dicentrarchus labrax L.) kept under different photoperiod and temperature regimes. Fish Physiol. Biochem. 2, 53–63. [CrossRef] [PubMed] [Google Scholar]
  • Zupa W., Carbonara P., Spedicato M.T., Lembo G., 2015. Modelling swimming activities and energetic costs in European sea bass (Dicentrarchus labrax L., 1758) during critical swimming tests. Mar. Freshw. Behav. Physiol. 48, 341–357. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.