Free Access
Issue
Aquat. Living Resour.
Volume 27, Number 1, January-March 2014
Page(s) 1 - 16
DOI https://doi.org/10.1051/alr/2014003
Published online 02 September 2014
  • Abrahams M., Healey M., 1993, Some consequences of variation in vessel density: a manipulative field experiment. Fish. Res. 15, 315–322. [CrossRef] [Google Scholar]
  • Alban F., Le Floc’h P., Boncoeur J., 2004, The impact of economic and regulatory factors on the relative profitability of fishing boats: A case study of the seaweed harvesting fleet of Northwest Brittany (France). Aquat. Living Resour. 17, 185–193. [CrossRef] [EDP Sciences] [Google Scholar]
  • Allen P.M., McGlade J.M., 1986, Dynamics of discovery and exploitation - the case of the Scotian Shelf groundfish fisheries. Can. J. Fish. Aquat. Sci. 43, 1187–1200. [CrossRef] [Google Scholar]
  • Anderson J., Guillen J., 2009, Annual Economic Report on the EU Fishing Fleet. . [Google Scholar]
  • Armannsson H., Jonsson S.T., Neilson J.D., Marteinsdottir G., 2007, Distribution and migration of saithe (Pollachius virens) around Iceland inferred from mark-recapture studies. ICES J. Mar. Sci. 64, 1006–1016. [CrossRef] [Google Scholar]
  • Baranov F.I., 1918, On the question of the biological basis of fisheries. Nauchnge Issledovaniya Ikhtiol. Inst. Izvestiya 1, 81–128. [Google Scholar]
  • Béné C., Doyen L., Gabay D., 2001, A viability analysis for a bio-economic model. Ecol. Econ. 36, 385–396. [CrossRef] [Google Scholar]
  • Bertelsen E., 1942, Contributions to the biology of the coalfish (Gadus virens L.) in Faroe waters, with special regard to the youngest age groups. Medd. Komm. Danm. Fiskeri og Havunders 11, 1–69. [Google Scholar]
  • Beverton R.J.H., Holt S.J., 1957, On the dynamics of exploited fish populations. Fish. Invest. Lond., Ser. 2, 19–533. [Google Scholar]
  • Bockstael N.E., Opaluch J.J., 1983, Discrete modelling of supply response under uncertainty: the case of the fishery. J. Environ. Econ. Manage. 10, 125–137. [CrossRef] [Google Scholar]
  • Booth A.J., 2000, Incorporating the spatial component of fisheries data into stock assessment models. ICES J. Mar. Sci. 57, 858–865. [CrossRef] [Google Scholar]
  • Botsford L.W., Brumbaugh D.R., Grimes C., Kellner J.B., Largier J., O’Farrell M.R., Ralston S., Soulanille E., Wespestad V., 2009, Connectivity, sustainability, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish. Biol. Fish. 19, 69–95. [CrossRef] [Google Scholar]
  • Branch T.A., Hilborn R., et al., 2006, Fleet dynamics and fishermen behavior: lessons for fisheries managers. Can J. Fish. Aquat. Sci. 63, 1647–1668. [CrossRef] [Google Scholar]
  • Caddy J., Carocci F., 1999, The spatial allocation of fishing intensity by port-based inshore fleets: a GIS application. ICES J. Mar. Sci. 56, 388–403. [CrossRef] [Google Scholar]
  • Cambiè G., Ourens R., Vidal D.F., Carabel S., Freire J., 2012, Economic performance of coastal fisheries in Galicia (NW Spain): case study of the Cíes Islands. Aquat. Living Resour. 25, 195–204. [CrossRef] [EDP Sciences] [Google Scholar]
  • Casini M., Cardinale M., Hjelm J., Vitale F., 2005, Trends in CPUE and related changes in spatial distribution of demersal fish species in the Kattegat and Skagerrak, eastern North Sea, between 1981 and 2003. ICES J. Mar. Sci. 62, 671–682. [CrossRef] [Google Scholar]
  • Cheung W.W.L., Dunne J., Sarmiento J.L., Pauly D., 2011, Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018. [CrossRef] [Google Scholar]
  • Clay D., Stobo W.T., Beck B., Hurley P.C.F., 1989, Growth of juvenile pollock (Pollachius virens L.) along the Atlantic coast of Canada with inferences of inshore-offshore movements. J. Northwest Atl. Fish. Sci. 9, 37–43. [CrossRef] [Google Scholar]
  • Commission Decision, 2009, Adopting a multiannual Community programme for the collection, management and use of data in the fisheries sector for the period 2011-2013. Off. J. Eur. Union 2010/93/EU. [Google Scholar]
  • DeYoung B., Rose G.A., 1993, On recruitment and distribution of Atlantic cod (Gadus morhua) off Newfoundland. Can. J. Fish. Aquat. Sci. 50, 2729–2741. [CrossRef] [Google Scholar]
  • Dieckmann U., O’Hara B., Weisser W., 1999, The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90. [CrossRef] [Google Scholar]
  • Dorn M.W., 1998, Fine-scale fishing strategies of factory trawlers in a midwater trawl fishery for Pacific hake (Merluccius productus). Can. J. Fish. Aquat. Sci. 55, 180–198. [CrossRef] [Google Scholar]
  • Dornbusch R., Fisher S., 1994, Macroeconomics. McGraw-Hill Inc., Chapter 10. [Google Scholar]
  • Drud A., 1991, CONOPT- a large scale GRG codeARKI Consulting Development A.S, Bagsvaerd, Denmark. [Google Scholar]
  • Eales J., Wilen J.E., 1986, An examination of fishing location choice in the pink shrimp fishery. Mar Resour. Econ. 2, 331–351. [Google Scholar]
  • Eide A., Skjold F., Olsen F., Flaaten O., 2003, Harvest functions: The Norwegian bottom trawl cod fisheries. Mar. Resour. Econ. 18, 81–94. [Google Scholar]
  • FAO, 1999, Yearbook of Fishery Statistics. . [Google Scholar]
  • Federal Ministry of Finance, 2009, Entwicklung der Energie- (vormals Mineralöl-) und Stromsteuersätze in der Bundesrepublik Deutschland, Bonn. [Google Scholar]
  • Federal Office for Agriculture and Food, 2005, 2006, 2007, Bericht über die Fischerei und die Marktsituation für Fischereierzeugnisse in der Bundesrepublik Deutschland. Monatsberichte . [Google Scholar]
  • Federal Statistical Office, 2013, Erzeugerpreise gewerblicher Produkte (Inlandsabsatz). Preise für leichtes Heizöl, schweres Heizöl, Motorenbenzin und Dieselkraftstoff. Lange Reihen ab 1976 bis August 2013. Artikelnummer: 5612402131085 . [Google Scholar]
  • Frost H., Andersen J.L., Hoff A., Thorgersen T., 2009, The EIAA Model: Methodology, definitions and model outline. Copenhagen, Institute of Food and Resource Economics. FOI Report No. 200. [Google Scholar]
  • Gascuel D., Fonteneau A., Foucher E., 1993, Analysis of fishing power evolution using virtual population analysis: the case of purse seiners exploiting yellowfin (Thunnus albacares) in the Eastern Atlantic. Aquat. Living Resour. 6, 15–30. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gatewood J.B., 1984, cooperation, competition, and synergy: information-sharing groups among Southeast Alaskan salmon seiners. Am. Ethnol. 11, 350–370. [CrossRef] [Google Scholar]
  • Gillis D.M., 2003, Ideal free distributions in fleet dynamics: a behavioral perspective on vessel movement in fisheries analysis. Can. J. Zool. 81, 177–187. [CrossRef] [Google Scholar]
  • Gorfine H.K., Dixon C.D., 2001, Diver behaviour and its influence on assessments of a quota-managed abalone fishery. J. Shellfish Res. 20, 787–794. [Google Scholar]
  • Hanna S.S., Smith C.L., 1993, Attitudes of trawl vessel captains about work, resource use, and fishery management. N. Am. J. Fish. Manage. 13, 367–375. [CrossRef] [Google Scholar]
  • Harley S.J., Myers R.A., Dunn A., 2001, Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58, 1760–1772. [CrossRef] [Google Scholar]
  • Hilborn R., 1985, Fleet dynamics and individual variation - why some people catch more fish than others. Can. J. Fish. Aquat. Sci. 42, 2–13. [CrossRef] [Google Scholar]
  • Hilborn R., Kennedy R.B., 1992, Spatial pattern in catch rates: a test of economic theory. Bull. Math. Biol. 54, 263–273. [CrossRef] [Google Scholar]
  • Hilborn R., Ledbetter M., 1979, Analysis of the British-Columbia salmon purse-seine fleet - Dynamics of movement. J. Fish Res. Board Can. 36, 384–391. [CrossRef] [Google Scholar]
  • Hilborn R., Walters C.J., 1992, Quantitative fisheries stock assessment: Choice, dynamics and uncertainty. Rev. Fish Biol. Fish. 2, 177–178. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Homrum E.I., Hansen B., Steingrund P., Hatun H., 2012, Growth, maturation, diet and distribution of saithe (Pollachius virens) in Faroese waters (NE Atlantic). Mar. Biol. Res. 8, 246–254. [CrossRef] [Google Scholar]
  • ICES, 2010, Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Document CM 2010/ACOM, 13. [Google Scholar]
  • ICES, 2011, Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Document CM 2011/ACOM, 560. [Google Scholar]
  • ICES, 2012, Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Document CM 2012/ACOM, 13. [Google Scholar]
  • ICES, 2013, Report of the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). 24–30 April 2013. ICES Document CM 2013/ACOM:13. [Google Scholar]
  • Jacobson L.D., Thomson C.J., 1993, Opportunity costs and the decision to fish for northern anchovy. N. Am. J. Fish. Manage. 13, 27–34. [CrossRef] [Google Scholar]
  • Jones B.W., Jonson J., 1971, Coalfish tagging experiments at Iceland. Rit Fiskideildar 5, 1–27. [Google Scholar]
  • Jones M.C., Dye S.R., Fernandes J.A., Froelicher T.L., Pinnegar J.K., Warren R., Cheung W.W.L., 2013, Predicting the impact of climate change on threatened species in UK waters. Plos One 8, e54216. [Google Scholar]
  • Jones M.C., Dye S.R., Pinnegar J.K., Warren R., Cheung W.W.L., 2012, Modelling commercial fish distributions: Prediction and assessment using different approaches. Ecol. Model. 225, 133–145. [CrossRef] [Google Scholar]
  • Kaschner K., Ready J., et al., 2008, AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication, wwwaquamapsorg, Version 10, 2008. [Google Scholar]
  • Kerr L.A., Cadrin S.X., Secor D.H., 2010, The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol. Appl. 20, 497–507. [CrossRef] [PubMed] [Google Scholar]
  • Lane D.E., 1988, Investment decision making by fishermen. Can. J. Fish. Aquat. Sci. 45, 782–796. [CrossRef] [Google Scholar]
  • Lassen H., Medley P., 2001, Virtual population analysis: a practical manual for stock assessment. FAO. [Google Scholar]
  • Marchal P., Andersen B., Caillart B.Eigaard O., Guyader O., et al., 2007, Impact of technological creep on fishing effort and fishing mortality, for a selection of European fleets. ICES J. Mar. Sci. 64, 192–209. [Google Scholar]
  • Maunder M.N., Punt A.E., 2004, Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159. [CrossRef] [Google Scholar]
  • Olsen E., Aanes S., Mehl S., Holst J.C., Aglen A., Gjosaeter H., 2010, Cod, haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: a review of the biological value of the area. ICES J. Mar. Sci. 67, 87–101. [CrossRef] [Google Scholar]
  • Opaluch J.J., Bockstael N.E., 1984, Behavioral modeling and fisheries management. Mar. Resour. Econ. 1, 105–115. [Google Scholar]
  • Palmer C.T., 1991, Kin-selection, reciprocal altruism, and information sharing among Maine lobstermen. Ethol. Sociobiol. 12, 221–235. [CrossRef] [Google Scholar]
  • Paloheimo J., Dickie L., 1964, Abundance and fishing success. Rapp. P.-V. Réun. Cons. Internat. Explor. Mer 155. [Google Scholar]
  • Pelletier D., Magal P., 1996, Dynamics of a migratory population under different fishing effort allocation schemes in time and space. Can. J. Fish. Aquat. Sci. 53, 1186–1199. [CrossRef] [Google Scholar]
  • Poos J.J., Rijnsdorp A.D., 2007, An “experiment” on effort allocation of fishing vessels: the role of interference competition and area specialization. Can. J. Fish. Aquat. Sci. 64, 304–313. [CrossRef] [Google Scholar]
  • Prince J., Hilborn R., 1998, Concentration profiles and invertebrate fisheries management. Can. Spec. Publ. Fish. Aquat. Sci. 187–198. [Google Scholar]
  • Reinsch H., 1976, Köhler und Steinköhler. A. Ziemsen Verlag Vittenberg Lutherstadt. [Google Scholar]
  • Robinson C., Pascoe S., 1998, Input controls, input substitution and profit maximisation in the English Channel beam trawl fishery. J. Agric. Econ. 49, 16–33. [CrossRef] [Google Scholar]
  • Rose G.A., Atkinson B.A, Baidr J., Bishop C.A., Kulka D.W., 1994, Changes in distribution of Atlantic cod and thermal variations in Newfoundland waters, 1980-1992. ICES Mar. Sci. Symp. 198, 542–552. [Google Scholar]
  • Rose G.A, Kulka D.W., 1999, Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Can. J. Fish. Aquat. Sci. 56(S1), 118–127. [CrossRef] [Google Scholar]
  • Salas S., Gaertner D., 2004, The behavioural dynamics of fishers: management implications. Fish Fish. 5, 153–167. [Google Scholar]
  • Salz P., Buisman E., Frost, H., Accadia, P., Prellezo, R., Soma, K., 2011, Fishrent: bio-economic simulation and optimization model for fisheries. LEI Report 2011, n° 24. [Google Scholar]
  • Sampson D.B., 1990, Fishing Technology and Fleet Dynamics: Predictions from a bio-economic model. Portsmouth Polytechnic, Centre for Marine Resource Economics. [Google Scholar]
  • Sumaila U.R., Teh L., Watson R., Tyedmers P., Pauly D., 2008, Fuel price increase, subsidies, overcapacity and resource sustainability. ICES J. Mar. Sci. 65, 832–840. [CrossRef] [Google Scholar]
  • Swain D.P., Wade E.J., 2003, Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): tests of predictions of the ideal free distribution. Can. J. Fish. Aquat. Sci. 60, 897–909. [CrossRef] [Google Scholar]
  • Tidd A.N., Hutton T., Kell L.T., Padda G., 2011, Exit and entry of fishing vessels: an evaluation of factors affecting investment decisions in the North Sea English beam trawl fleet. ICES J. Mar. Sci. 68, 961–971. [CrossRef] [Google Scholar]
  • Trenkel V.M., Beecham J.A., Blanchard J.L., Edwards C.T.T., Lorance P., 2013, Testing CPUE-derived spatial occupancy as an indicator for stock abundance: application to deep-sea stocks. Aquat. Living Resour. 26, 319–332. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ulrich C., Pascoe S., Sparre PJ., De Wilde JW., Marchal P., 2002, Influence of trends in fishing power on bioeconomics in the North Sea flatfish fishery regulated by catches or by effort quotas. Can. J. Fish. Aquat. Sci. 59, 829–843. [CrossRef] [Google Scholar]
  • van Dijk D., Hendrix E.M., Haijema R., Groeneveld R.A., van Ierland E.C., 2014, On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota. Ecol. Model. 272, 68–75. [CrossRef] [Google Scholar]
  • von Bertalanffy L., 1938, A quantitative theory of organic growth. Hum. Biol. 10, 181–213. [Google Scholar]
  • Wilen J.E., 1979, Fisherman behavior and the design of efficient fisheries regulation programs. J. Fish. Board Can. 36, 855–858. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.