Free Access
Issue
Aquat. Living Resour.
Volume 24, Number 1, January-March 2011
Page(s) 71 - 78
Section Regular Articles
DOI https://doi.org/10.1051/alr/2011104
Published online 17 March 2011
  • Balk H., Lindem T., 2006, Sonar 4, Sonar 5, Sonar 6 – Post-processing Systems. Operator Manual. Lindem Data Acquisition, Oslo. [Google Scholar]
  • Barange M., Hampton I., 1996, Empirical determination of in situ target strengths of three loosely aggregated pelagic fish species. ICES J. Mar. Sci. 53, 225–232. [CrossRef] [Google Scholar]
  • CEN (European Committee for Standardization) 2009, Water quality – Guidance on the estimation of fish abundance with mobile hydroacoustic methods, prEN 1591041. [Google Scholar]
  • Djemali I., Toujani R., Guillard J., 2009, Hydroacoustic fish biomass assessment in man-made lakes in Tunisia: horizontal beaming importance and diel effect. Aquat. Ecol. 43, 1121–1131. [CrossRef] [Google Scholar]
  • Falster D.S., Warton D.I., Wright I.J., 2006, SMATR: Standardised major axis tests and routines, ver 2.0. http://www.bio.mq.edu.au/ecology/SMATR/. [Google Scholar]
  • Forbes S.T., Nakken O., 1972, Manual of methods for fisheries resource survey and appraisal., Part. 2, The use of acoustic instruments for fish detection and abundance estimation. FAO Manuals in Fisheries Science, 5. [Google Scholar]
  • Foote K.G., 1987, Fish target strengths for use in echo integrator survey. J. Acoust. Soc. Am. 82, 981–987. [CrossRef] [Google Scholar]
  • Foote K.G., Knudsen H.P., Vestnes G., MacLennan D.N., Simmonds E.J., 1987, Calibration of acoustic instruments for fish-density estimation: a practical guide. ICES Coop. Res. Rep., 144. [Google Scholar]
  • Gauthier S., Rose G.A., 2001, Diagnostic tools for unbiased in situ target strength estimation. Can. J. Fish. Aquat. Sci. 58, 2149–2155. [CrossRef] [Google Scholar]
  • Godlewska M., Swierzowski A., Winfield I.J., 2004, Hydroacoustics as a tool for studies of fish and their habitat. Ecohydrol. Hydrobiol. 4, 417–427. [Google Scholar]
  • Guillard J., Balay P., Colon M., Brehmer P., 2010, Survey boat effect on YOY fish schools in a pre-alpine lake: evidence from multibeam sonar and split-beam echosounder data. Ecol. Freshw. Fish 19, 373–380. [CrossRef] [Google Scholar]
  • Guillard J., Lebourges-Dhaussy A., Brehmer P., 2004, Simultaneous Sv and TS measurements on YOY fresh water fish using three frequencies. ICES J. Mar. Sci. 61, 267–273. [CrossRef] [Google Scholar]
  • Guillard J., Perga M.E., Colon M., Angeli N., 2006, Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish. Manage. Ecol. 13, 319–327. [CrossRef] [Google Scholar]
  • Guillard J., Verges C., 2007, The repeatability of fish biomass and size distribution estimates obtained by hydroacoustic surveys using various sampling strategies and statistical analyses. Int. Rev. Hydrobiol. 92, 605–617. [CrossRef] [Google Scholar]
  • Kaartvedt S., Røstad A., Klevjer T.A., Staby A., 2009, Use of bottom-mounted echo sounders in exploring behavior of mesopelagic fishes. Mar. Ecol. Prog. Ser. 395, 109–118. [CrossRef] [Google Scholar]
  • Knudsen F.R., Larsson P., Jakobsen P.J., 2006, Acoustic scattering from a larval insect (Chaoborus flavicans) at six echosounder frequencies: implication for acoustic estimates of fish abundance. Fish. Res. 79, 84–89. [CrossRef] [Google Scholar]
  • Kozłowski J., Poczyczyñski P., Zdanowski B., 2008, Środowisko i ichtiofauna jeziora Hañcza. IRŚ, Olsztyn. [Google Scholar]
  • Kubecka J., 1995, Effect of pulse duration and frequency bandwidth on fish target strength and echo shape in horizontal sonar applications. In: XII Symposium on Hydroacoustics, Jurata 16–19 May 1995, Polish Naval Military Academy, 913/95, pp. 187–174. [Google Scholar]
  • MacLennan D., Fernandes P.G., Dalen J., 2002, A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369. [CrossRef] [Google Scholar]
  • Masson S., Angeli N., Guillard J., Pinel-Alloul B., 2001, Diel vertical and horizontal distribution of crustacean zooplankton and Y-O-Y fish in a sub alpine lake: an approach based on high frequency sampling. J. Plankton Res. 23, 1041–1060. [CrossRef] [Google Scholar]
  • Mehner T., Busch S., Helland I.P., Emmrich M., Freyhof J., 2010, Temperature related nocturnal vertical segregation of coexisting coregonids. Ecol. Freshw. Fish 19, 408–419. [CrossRef] [Google Scholar]
  • Mehner T., Kasprzak P., Hölker F., 2007, Exploring ultimate hypotheses to predict diel vertical migrations in coregonid fish. Can. J. Fish. Aquat. Sci. 64, 874–398. [CrossRef] [Google Scholar]
  • O’ Driscoll S., Rose G.A., 2001, In situ acoustic target strength of juvenile capelin. ICES J. Mar. Sci. 58, 342–345. [CrossRef] [Google Scholar]
  • Murphy B.R., Willis D.W., 1996, Fisheries Techniques, 2nd edn. American Fisheries Society, Bethesda, MD. [Google Scholar]
  • Rose G.A., 1998, Acoustic target strength of capelin in Newfoundland waters. ICES J. Mar. Sci. 55, 918–923. [CrossRef] [Google Scholar]
  • Rudstam L G., Parker-Stetter S. L., Sullivan P. J., Warner D.M., 2009, Towards a standard operating procedure for fishery acoustic surveys in the Laurentian Great Lakes, North America. ICES J. Mar. Sci. 66, 1391–1397. [CrossRef] [Google Scholar]
  • Sawada K., Furusawa M., Williamson N.J., 1993, Conditions for the precise measurement of fish target strength in situ. Fish. Sci. 20, 15–21. [Google Scholar]
  • Simmonds E.J., Gutierrez M., Chipollini A., Gerlotto F., Woillez M., Bertrand A., 2009, Optimizing the design of acoustic surveys of Peruvian anchoveta. ICES J. Mar. Sci. 66, 1341–1348. [CrossRef] [Google Scholar]
  • Simmonds E.J., MacLennan D.N., 2005, Fisheries acoustics: theory and practice. Wiley- Blackwell, 2nd edn., Oxford. [Google Scholar]
  • Soule M., Barange M., Hampton I., 1995, Evidence of bias in estimates of target strength obtained with a split beam echosounder. ICES J. Mar. Sci. 52, 139–144. [CrossRef] [Google Scholar]
  • Soule M., Barange M., Solli H., Hampton I., 1997, Performance of a new phase algorithm for discriminating between single and overlapping echoes in a split beam echosounder. ICES J. Mar. Sci. 54, 934–938. [CrossRef] [Google Scholar]
  • Sprent P., 1992, Pratique des Statistiques non Parametriques. INRA, Paris. [Google Scholar]
  • Trenkel V.M., Berger L., Bourguignon S., Doray M., Fablet R., Massé J., Mazauric V., Poncelet C., Quemener G., Scalabrin C., Villalobos H., 2009, Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay. Aquat. Living Resour. 22, 1–13. [CrossRef] [EDP Sciences] [Google Scholar]
  • Wanzenböck J., Mehner T., Schulz M., Gassner H., Winfield I.J., 2003, Quality assurance of hydroacoustic surveys: the repeatability of fish-abundance and biomass estimates in lakes within and between hydroacoustic systems. ICES J. Mar. Sci. 60, 486–492. [CrossRef] [Google Scholar]
  • Warner D.M., Schaeffer J.S., O’ Brien T.P., 2009, The Lake Huron pelagic fish community: persistent spatial pattern along biomass and species composition gradients. Can. J. Fish. Aquat. Sci. 66, 1199–1215. [CrossRef] [Google Scholar]
  • Warton D.I., Wright I.J., Falster D.S., Westoby M., 2006. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291. [Google Scholar]
  • Winfield I.J., Fletcher J.M., James J.B., Bean C.W., 2009, Assessment of fish populations in still waters using hydroacoustics and survey gill netting: experiences with Arctic charr (Salvelinus alpinus) in the UK. Fish. Res. 96, 30–38. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.