Free Access
Issue
Aquat. Living Resour.
Volume 23, Number 1, January-March 2010
Page(s) 35 - 47
Section Thematic section
DOI https://doi.org/10.1051/alr/2009053
Published online 17 March 2010
  • Anonymous, 2008, Report of the 2008 Atlantic Bluefin Tuna Stock Assessment Session, Madrid, June 2008. [Google Scholar]
  • Boyce M.S., Vernier P.R., Nielson S.E., Schmiegelow F.K.A., 2002, Evaluating resource selection functions. Ecol. Model. 157, 281–300. [CrossRef] [Google Scholar]
  • Coull B.A., Agresti A., 2000, Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution. Biometrics 56, 73–80. [CrossRef] [PubMed] [Google Scholar]
  • Cumming G.S., 2000, Using between-model comparisons to fine-tune linear models of species ranges. J. Biogeogr. 27, 441–55. [CrossRef] [Google Scholar]
  • Hall D.B., 2000, Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56, 1030–1039. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lehmann E.L., 1998, Nonparametrics: Statistical Methods Based on Ranks, New Jersey: Prentice Hall. [Google Scholar]
  • Lo N.C.H., Jacobson L.D., Squire J.L., 1992, Indices of relative abundance from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci. 49, 1515–1526. [Google Scholar]
  • Martin T.G., Wintle B.A., Rhodes J.R., Kuhnert P.M., Field S.A., Low-Choy S.J., Tyre A.J., Possingham H.P., 2005, Zero tolerance ecology: improving ecological inference by modeling the source of zero observations. Ecol. Lett. 8, 1235–1246. [CrossRef] [PubMed] [Google Scholar]
  • McConnaughey R.A., Conquest L.L., 1993, Trawl survey estimation using a comparative approach based on lognormal theory. Fish. Bull. 91, 107–118. [Google Scholar]
  • McGowan M.F., Richards W.J., 1986, Distribution and abundance of bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico in 1982 and 1983 with estimates of the biomass and population size of the spawning stock for 1977, 1978, and 1981-1983. ICCAT. Coll. Vol. Sci. Pap. 24, 182–195. [Google Scholar]
  • McPherson J.A., Jetz W., Rogers D.J., 2004, The effects of species' range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823. [CrossRef] [Google Scholar]
  • Minami M., Lennert-Cody C.E., Gao W., Roman-Verdesoto M.H., 2007, Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing. Fish. Res. 84, 210–221. [CrossRef] [Google Scholar]
  • Murphy G.I., 1990, A review of Atlantic bluefin tuna larval surveys. ICCAT. Coll. Vol. Sci. Pap. 32, 262–269. [Google Scholar]
  • Pennington M., 1983, Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39, 281–286. [CrossRef] [Google Scholar]
  • Pennington M., 1996, Estimating the mean and variance from highly skewed data. Fish. Bull. 94, 498–505. [Google Scholar]
  • Richards W.J., 1990, Results of a review of the U.S. bluefin tuna larval assessment with a brief response. ICCAT. Coll. Vol. Sci. Pap. 32, 240–247. [Google Scholar]
  • Richards W.J., Potthoff T., 1980, Distribution and abundance of bluefin tuna larvae in the Gulf of Mexico in 1977 and 1978. ICCAT. Coll. Vol. Sci. Pap. 9, 433–441. [Google Scholar]
  • Rooker J.R., Alvarado Bremer J.R., Block B.A., de Metrio G., Corriero A., Krause R.T., Prince E.D., Rodriguez-Marin E., Secor D.H., 2007, Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15, 265–310. [CrossRef] [Google Scholar]
  • Scott G.P., Turner S.C., Grimes C.B., Richards W.J., Brothers E.B., 1993, Indices of larval bluefin tuna, Thunnus thynnus, abundance in the Gulf of Mexico; modeling variability in growth, mortality, and gear selectivity. Bull. Mar. Sci. 53, 912–929. [Google Scholar]
  • Scott G.P., Turner S.C., 1994, An updated index of west Atlantic bluefin spawning biomass based on larval surveys in the Gulf of Mexico. ICCAT Coll. Vol. Sci. Pap. 62, 211–213. [Google Scholar]
  • Steventon J.D., Bergerud W.A., Ott P.K., 2005, Analysis of presence/absence data when absence is uncertain (false zeroes): an example for the northern flying squirrel using SAS®. Res. Br., Bristish Cololumbia Min. Forests, Victoria BC, Exten. Note 74. [Google Scholar]
  • Tyre A.J., Tenhumberg B., Field S.A., Niejalke D., Parris K., Possingham H.P., 2003, Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol. Appl. 13, 1790–1801. [CrossRef] [Google Scholar]
  • Vieira A.M.C., Hinde J.P., Demetrio C.G.B., 2000, Zero-inflated proportion data models applied to a biological control assay. J. Appl. Stat. 27, 373–389. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.