Issue
Aquat. Living Resour.
Volume 22, Number 2, April-June 2009
Fish Stock Assessments Using Surveys and Indicators
Page(s) 187 - 192
DOI https://doi.org/10.1051/alr/2008058
Published online 17 June 2009
  • Chang W.R., McLean I.P., 2006, Cusum: a tool for early feedback about performance? BMC Medical Res. Methodol. 2006, 6:8 (http://www.biomedcentral.com/1471-2288/6/8) [CrossRef] [Google Scholar]
  • Derman C., Ross S.M., 1997, Statistical aspects of quality control. London, Academic Press. [Google Scholar]
  • Gan F.F., 1993, The run-length distribution of a cumulative sum control chart. J. Qual. Technol. 25, 205–215. [Google Scholar]
  • Hawkins D.M., Olwell D.H., 1998, Cumulative sum charts and charting for quality improvement. New York, Springer Verlag. [Google Scholar]
  • ICES, 2003, Report of the ICES Advisory Committee on Fishery Management, 2003. ICES Coop. Res. Rep. 261, 3 volumes. [Google Scholar]
  • Jones L.A., Champ C.W., Rigdon S.E., 2004, The run length distribution of the CUSUM with estimated parameters. J. Qual. Technol. 36, 95–108. [Google Scholar]
  • Jun C.-H., Choi M.S., 1993. Simulating the average run length for CUSUM schemes using variance reduction techniques. Communications in Statistics B: Simulation 22, 877–887. [Google Scholar]
  • Lu C.-W., Reynolds M.R., 1999, Control charts for monitoring the mean and variance of autocorrelated processes. J. Qual. Technol. 31, 259–274. [Google Scholar]
  • Luceño A., Puig-Pey J., 2002, Computing the run-length probability distribution for CUSUM charts. J. Qual. Technol. 34, 209–215. [Google Scholar]
  • Manly B.F.J., 2001, Statistics for environmental science and management. Boca Raton, Chapman & Hall/CRC. [Google Scholar]
  • Montgomery D.C., 1991, Introduction to statistical quality control. 5th Edition 2005. New York, Wiley. [Google Scholar]
  • Moustakides G.V., 1986, Optimal stopping times for detecting changes in distributions. Ann. Stat. 14, 1379–1387. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Nicholson M.D., 1984, Some applications of CUSUM techniques in fisheries research. Int. Counc. Explor. Sea, CM 1984/D:5, 10 p. [Google Scholar]
  • Page E.S., 1961, Cumulative sum control charts. Technometrics 3, 1–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Petitgas P., 2009, The CUSUM out-of-control table to monitor changes in fish stock status using many indicators. Aquat. Living Resour. 22, 201–206. [CrossRef] [EDP Sciences] [Google Scholar]
  • R Development Core Team, 2005, R: A language and environment for statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. URL http://cran.r-project.org/ [Google Scholar]
  • Reynolds M.R., Stoumbos Z.G., 2004, Control charts and the efficient allocation of sampling resources. Technometrics 47, 409–424. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Scandol J.P., 2003, Use of cumulative sum (CUSUM) control charts of landed catch in the management of fisheries. Fish. Res. 64, 19–36. [Google Scholar]
  • Scandol J.P., 2005, Use of quality control methods to monitor the status of fish stocks. In: Kruse G.H., Gallucci V.F., Hay D.E., Perry R.I., Peterman R.M., Shirley T.C., Spencer P.D., Wilson B., Woodby D. (eds.), Fisheries Assessment and Management in Data-Limited Situations. Alaska Sea Grant College Program, University of Alaska Fairbanks, pp. 213–233. [Google Scholar]
  • Starks T.H., Flatman G.T., 1991, RCRA ground-water monitoring decision procedures viewed as quality control schemes. Environ. Monitoring Assess. 16, 19–37. [CrossRef] [Google Scholar]
  • Whetherill G.B., Brown D.W., 1991, Statistical process control: theory and practice. London, Chapman & Hall. [Google Scholar]
  • Woodall W.H., Adams B.M., 1993, The statistical design of Cusum charts. Qual. Eng. 5, 559–570. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.