Issue
Aquat. Living Resour.
Volume 22, Number 2, April-June 2009
Fish Stock Assessments Using Surveys and Indicators
Page(s) 193 - 200
DOI https://doi.org/10.1051/alr/2009020
Published online 17 June 2009
  • Bouleau M., 2005, Combinaison géostatistique de l'acoustique et des captures dans les campagnes scientifiques de pêche par chalutage. Thèse dr Géostatistique, Ecole Nationale Supérieure des Mines, Paris. [Google Scholar]
  • Conradsen K., Ersboll B.K., Thyrsted T., 1985, A comparison of min/max autocorrelation factor analysis and ordinary factor analysis. Nordic Symposium in Applied Statistics, Lyngby, pp. 47-56. [Google Scholar]
  • Cotter J., Mesnil B., Witthames P., Uriarte A., Parker-Humphreys M., 2009, Notes on nine biological indicators estimable from trawl surveys with an illustrative assessment for North Sea cod. Aquat. Living Resour. 22, 135–153. [CrossRef] [EDP Sciences] [Google Scholar]
  • Desbarats A.J., 2001, Geostatistical modelling of regionalized grain-size distributions using min/max autocorrelation factors. In: Monestiez P., Allard D., Froidevaux R. (Eds.) Geostatistics for Environmental Applications III, Kluwer Academic Publisher, pp. 441–452. [Google Scholar]
  • Desbarats A.J., Dimitrakopoulos R., 2000, Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors. Math. Geol. 32, 919–942. [CrossRef] [Google Scholar]
  • Erzini K., 2005, Trends in NE Atlantic landings (southern Portugal): identifying the relative importance of fisheries and environmental variables. Fish. Oceanogr. 14, 195–209. [CrossRef] [Google Scholar]
  • Erzini K., Inejih C.A.O., Stobberup K.A., 2005, An application of two techniques for the analysis of short, multivariate non-stationary time-series of Mauritanian trawl survey data. ICES J. Mar. Sci. 62, 353–359. [CrossRef] [Google Scholar]
  • Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A., Andrews, J. 2004, Analysis of the spatial distribution of mature cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) abundance in the North Sea (1980-1999) using generalised additive models. Fish. Res. 70, 17–25. [Google Scholar]
  • ICES, 2003, Report of the ICES Advisory Committee on Fishery Management, ICES Coop. Res. Rep. 261. [Google Scholar]
  • Jennings S., 2005, Indicators to support an ecosystem approach to fisheries. Fish Fish. 6, 212–232. [Google Scholar]
  • Löfgren K.-G., Ranneby B., Sjöstedt S., 1993, Forecasting the business cycle without using minimum autocorrelation factors. J. Forecasting 12, 481–498. [CrossRef] [Google Scholar]
  • Pearce K.F., Frid C.L.J., 1999, Coincident changes in four components of the North Sea ecosystem. J. Mar. Biol. Assoc. UK 79, 183–185. [CrossRef] [Google Scholar]
  • R development Core Team, 2005, R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. URL http://cran.r-project.org/ [Google Scholar]
  • Rindorf, A., Lewy, P., 2006, Warm windy winters drive cod north and homing keeps them there. J. Appl. Ecol. 43, 445–453. [CrossRef] [Google Scholar]
  • Shapiro D.E., Switzer P., 1989, Extracting time trends from multiple monitoring sites. Department of Statistics, Stanford University. Tech. Rep. 132. [Google Scholar]
  • Solow A.R., 1994, Detecting change in the composition of a multispecies community. Biometrics 50, 556–565. [CrossRef] [PubMed] [Google Scholar]
  • Switzer P., Green A.A., 1984, Min/max autocorrelation factors for multivariate spatial imaging. Department of Statistics, Stanford University, Tech. Rep. 6. [Google Scholar]
  • Woillez M., 2007, Contributions géostatistiques à la biologie halieutique. Thèse dr. Géostatistique, Ecole Nationale Supérieure des Mines, Paris. [Google Scholar]
  • Woillez M., Poulard J-C., Rivoirard J., Petitgas P., Bez N., 2007a, Indices for capturing spatial patterns and their evolution in time, with application to European hake (Merluccius merluccius) in the Bay of Biscay. ICES J. Mar. Sci. 64, 537–550. [CrossRef] [Google Scholar]
  • Woillez M., Rivoirard J., Petitgas P., 2007b, Selecting and combining survey-based indices of fish stocks using their correlation in time to make diagnostics of their status. ICES CM 2007/O:07. [Google Scholar]
  • Woillez M., Rivoirard J., Petitgas P., 2009, Notes on survey-based spatial indicators for monitoring fish populations. Aquat. Living Resour. 22, 155–164. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zuur A.F., Pierce G.J., 2004, Common trends in Northeast Atlantic squid time series. J. Sea Res. 52, 57–72. [CrossRef] [Google Scholar]
  • Zuur A.F., Fryer R.J., Jolliffe I.T., Dekker R., Beukema J.J., 2003a, Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685. [CrossRef] [Google Scholar]
  • Zuur A.F., Tuck I.D., Bailey N., 2003b, Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.