Aquat. Living Resour.
Volume 22, Number 2, April-June 2009
Fish Stock Assessments Using Surveys and Indicators
Page(s) 173 - 185
Published online 17 June 2009
  • Alvo M., Park J., 2002, Multivariate non-parametric tests of trend when the data are incomplete. Stat. Prob. Lett. 57, 281–290. [CrossRef] [Google Scholar]
  • Barlow R.E., Bartholomew D.J., Bremner J.M., Brunk H.D., 1972, Statistical inference under order restrictions. J. Wiley & Sons, London. [Google Scholar]
  • Bell C.B., Conquest L.L., Pyke R., Smith E.P., 1981, Some nonparametric statistics for monitoring water quality using benthic species counts. Environmetrics, Soc. Indust. Appl. Math. (SIAM) Philadelphia, 8, 100–120. [Google Scholar]
  • Berthouex P.M., Hau I., 1991, Difficulties related to using extreme percentiles for water quality regulations. Res. J. Water Pollut. Control Fed. 63, 873–879. [Google Scholar]
  • Brown B.M., 1983, Statistical uses of the spatial median. J. R. Stat. Soc. Ser. B, 45, 25–30. [Google Scholar]
  • Brown L.D., Cai T.T., DasGupta A., 2001, Interval estimation for a binomial proportion. Stat. Sci. 16, 101–133. [Google Scholar]
  • Brownlee K.A., 1965, Statistical theory and methodology in science and engineering. John Wiley & Sons, New York. [Google Scholar]
  • Burnham K.P., Anderson D.R., 2002, Model selection and multimodel inference. Springer, New York. [Google Scholar]
  • Cochran W.G., 1950, The comparison of percentages in matched samples. Biometrika 37, 256–266. [MathSciNet] [PubMed] [Google Scholar]
  • Conover W.J., 1971, Practical nonparametric statistics. John Wiley & Sons, New York. [Google Scholar]
  • Cotter A.J.R., 1985, Water quality surveys: a statistical method based on determinism, quantiles and the binomial distribution. Water Res. 19, 1179–1189. [CrossRef] [Google Scholar]
  • Cotter A.J.R., 1994, Compliance testing of two or more water quality determinands using quantiles. Environmetrics 5, 29–45. [CrossRef] [Google Scholar]
  • Dietz E.J., Killeen T.J., 1981, A nonparametric multivariate test for monotone trend with pharmaceutical applications. J. Am. Stat. Assoc. 76, 169–174. [Google Scholar]
  • Edgington E.S., 1995, Randomization tests. Marcel Dekker, Inc., New York. [Google Scholar]
  • El-Shaarawi A.H., 1993, Environmental monitoring, assessment and prediction of change. Environmetrics 4, 381–398. [CrossRef] [Google Scholar]
  • El-Shaarawi A.H., Niculescu S.P., 1992, On Kendall's Tau as a test of trend in time series data. Environmetrics 3, 385–411. [CrossRef] [Google Scholar]
  • Esterby S.R., 1993, Trend analysis methods for environmental data. Environmetrics 4, 459–481. [CrossRef] [Google Scholar]
  • Esterby S.R., 1996, Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrol. Process. 10, 127–149. [CrossRef] [Google Scholar]
  • Farrell R., 1980, Methods for classifying changes in environmental conditions. Vector Research Inc., Ann Arbor, Michigan, Techn. Rep. VRF-EPA7.4-FR80-1. [Google Scholar]
  • Hirsch R.M., Slack J.R., 1984, A nonparametric test for seasonal data with serial dependence. Water Resour. Res. 20, 727–732. [CrossRef] [Google Scholar]
  • Hollander M., Wolfe D.A., 1973, Nonparametric statistical methods. John Wiley & Sons, New York. [Google Scholar]
  • Hussian M., 2005, Monotonic and semiparametric regression for the detection of trends in environmental quality data. Department of Mathematics, Division of Statistics, Linköpings Universitet, SE-581 85 Linköping, Sweden. [Google Scholar]
  • Kendall M.A., 1976, Time-series. Charles Griffin and Co. Ltd., London. [Google Scholar]
  • Lanzante J.R., 1996, Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde data. Internat. J. Climatol. 16, 1197–1226. [CrossRef] [Google Scholar]
  • Lettenmaier D.P., 1976, Detection of trends in water quality data from records with dependent observations. Water Resour. Res. 12, 1037–1046. [CrossRef] [Google Scholar]
  • Lettenmaier D.P., 1988, Multivariate nonparametric tests for trend in water quality. Water Resour. Bull. Am. Water Resour. Assoc. 24, 505–512. [CrossRef] [Google Scholar]
  • Libiseller C., Grimvall A., 2002, Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics 13, 71–84. [CrossRef] [Google Scholar]
  • Loftis J.C., Taylor C.H., Chapman P.L., 1991a, Multivariate tests for trend in water quality. Water Resour. Res. 27, 1419–1429. [CrossRef] [Google Scholar]
  • Loftis J.C., Taylor C.H., Newell A.D., Chapman P.L., 1991b, Multivariate trend testing of lake water quality. Water Resour. Bull. Am. Water Resour. Assoc. 27, 461–473. [CrossRef] [Google Scholar]
  • Mann H.B., 1945, Nonparametric tests against trend. Econometrica 13, 245–259. [CrossRef] [MathSciNet] [Google Scholar]
  • Pettitt A.N., 1979, A non-parametric approach to the change-point problem. Appl. Stat. 28, 126–135. [Google Scholar]
  • Prins J. (2006). “NIST/SEMATECH e-Handbook of Statistical Methods” from [Google Scholar]
  • Sen P.K., 1968a, Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 63, 1379–1389. [Google Scholar]
  • Sen P.K., 1968b, On a class of aligned rank order tests in two-way layouts. Ann. Math. Stat. 39, 1115–1124. [CrossRef] [Google Scholar]
  • Smith E.P., Rheem S., Holtzman G.I., 1993, Multivariate assessment of trend in environmental variables. In: Patil G.P., Rao C.R. (Eds.) Multivariate environmental statistics. Amsterdam, Elsevier, pp. 491–507. [Google Scholar]
  • Swed F.S., Eisenhart C., 1943, Tables for testing randomness of grouping in a sequence of alternatives. Ann. Math. Stat. 14, 66–87. [CrossRef] [Google Scholar]
  • Thomas L., Burnham K.P., Buckland S.T., 2004, Temporal inferences from distance sampling surveys. In: Buckland S.T., Andersen D.R., Burnham K.P., Laake J.L., Borchers D.L., Thomas L. (Eds.) Advanced distance sampling. Oxford University Press, pp. 71–107. [Google Scholar]
  • Van Belle G., Hughes J.P., 1984, Nonparametric tests for trend in water quality. Water Resour. Res. 20, 127–136. [CrossRef] [Google Scholar]
  • Wood S.N., 2006, Generalized additive models; an introduction with R. Chapman & Hall/CRC, Boca Raton. [Google Scholar]
  • Yu Y.-S., Zou S., Whittemore D., 1993, Non-parametric trend analysis of water quality data of rivers in Kansas. J. Hydrol. 150, 61–80. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.