Aquat. Living Resour.
Volume 22, Number 2, April-June 2009
Fish Stock Assessments Using Surveys and Indicators
Page(s) 173 - 185
Published online 17 June 2009
  • Alvo M., Park J., 2002, Multivariate non-parametric tests of trend when the data are incomplete. Stat. Prob. Lett. 57, 281–290. [CrossRef]
  • Barlow R.E., Bartholomew D.J., Bremner J.M., Brunk H.D., 1972, Statistical inference under order restrictions. J. Wiley & Sons, London.
  • Bell C.B., Conquest L.L., Pyke R., Smith E.P., 1981, Some nonparametric statistics for monitoring water quality using benthic species counts. Environmetrics, Soc. Indust. Appl. Math. (SIAM) Philadelphia, 8, 100–120.
  • Berthouex P.M., Hau I., 1991, Difficulties related to using extreme percentiles for water quality regulations. Res. J. Water Pollut. Control Fed. 63, 873–879.
  • Brown B.M., 1983, Statistical uses of the spatial median. J. R. Stat. Soc. Ser. B, 45, 25–30.
  • Brown L.D., Cai T.T., DasGupta A., 2001, Interval estimation for a binomial proportion. Stat. Sci. 16, 101–133.
  • Brownlee K.A., 1965, Statistical theory and methodology in science and engineering. John Wiley & Sons, New York.
  • Burnham K.P., Anderson D.R., 2002, Model selection and multimodel inference. Springer, New York.
  • Cochran W.G., 1950, The comparison of percentages in matched samples. Biometrika 37, 256–266. [MathSciNet] [PubMed]
  • Conover W.J., 1971, Practical nonparametric statistics. John Wiley & Sons, New York.
  • Cotter A.J.R., 1985, Water quality surveys: a statistical method based on determinism, quantiles and the binomial distribution. Water Res. 19, 1179–1189. [CrossRef]
  • Cotter A.J.R., 1994, Compliance testing of two or more water quality determinands using quantiles. Environmetrics 5, 29–45. [CrossRef]
  • Dietz E.J., Killeen T.J., 1981, A nonparametric multivariate test for monotone trend with pharmaceutical applications. J. Am. Stat. Assoc. 76, 169–174.
  • Edgington E.S., 1995, Randomization tests. Marcel Dekker, Inc., New York.
  • El-Shaarawi A.H., 1993, Environmental monitoring, assessment and prediction of change. Environmetrics 4, 381–398. [CrossRef]
  • El-Shaarawi A.H., Niculescu S.P., 1992, On Kendall's Tau as a test of trend in time series data. Environmetrics 3, 385–411. [CrossRef]
  • Esterby S.R., 1993, Trend analysis methods for environmental data. Environmetrics 4, 459–481. [CrossRef]
  • Esterby S.R., 1996, Review of methods for the detection and estimation of trends with emphasis on water quality applications. Hydrol. Process. 10, 127–149. [CrossRef]
  • Farrell R., 1980, Methods for classifying changes in environmental conditions. Vector Research Inc., Ann Arbor, Michigan, Techn. Rep. VRF-EPA7.4-FR80-1.
  • Hirsch R.M., Slack J.R., 1984, A nonparametric test for seasonal data with serial dependence. Water Resour. Res. 20, 727–732. [CrossRef]
  • Hollander M., Wolfe D.A., 1973, Nonparametric statistical methods. John Wiley & Sons, New York.
  • Hussian M., 2005, Monotonic and semiparametric regression for the detection of trends in environmental quality data. Department of Mathematics, Division of Statistics, Linköpings Universitet, SE-581 85 Linköping, Sweden.
  • Kendall M.A., 1976, Time-series. Charles Griffin and Co. Ltd., London.
  • Lanzante J.R., 1996, Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde data. Internat. J. Climatol. 16, 1197–1226. [CrossRef]
  • Lettenmaier D.P., 1976, Detection of trends in water quality data from records with dependent observations. Water Resour. Res. 12, 1037–1046. [CrossRef]
  • Lettenmaier D.P., 1988, Multivariate nonparametric tests for trend in water quality. Water Resour. Bull. Am. Water Resour. Assoc. 24, 505–512. [CrossRef]
  • Libiseller C., Grimvall A., 2002, Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics 13, 71–84. [CrossRef]
  • Loftis J.C., Taylor C.H., Chapman P.L., 1991a, Multivariate tests for trend in water quality. Water Resour. Res. 27, 1419–1429. [CrossRef]
  • Loftis J.C., Taylor C.H., Newell A.D., Chapman P.L., 1991b, Multivariate trend testing of lake water quality. Water Resour. Bull. Am. Water Resour. Assoc. 27, 461–473. [CrossRef]
  • Mann H.B., 1945, Nonparametric tests against trend. Econometrica 13, 245–259. [CrossRef] [MathSciNet]
  • Pettitt A.N., 1979, A non-parametric approach to the change-point problem. Appl. Stat. 28, 126–135. [CrossRef]
  • Prins J. (2006). “NIST/SEMATECH e-Handbook of Statistical Methods” from
  • Sen P.K., 1968a, Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 63, 1379–1389. [CrossRef]
  • Sen P.K., 1968b, On a class of aligned rank order tests in two-way layouts. Ann. Math. Stat. 39, 1115–1124. [CrossRef]
  • Smith E.P., Rheem S., Holtzman G.I., 1993, Multivariate assessment of trend in environmental variables. In: Patil G.P., Rao C.R. (Eds.) Multivariate environmental statistics. Amsterdam, Elsevier, pp. 491–507.
  • Swed F.S., Eisenhart C., 1943, Tables for testing randomness of grouping in a sequence of alternatives. Ann. Math. Stat. 14, 66–87. [CrossRef]
  • Thomas L., Burnham K.P., Buckland S.T., 2004, Temporal inferences from distance sampling surveys. In: Buckland S.T., Andersen D.R., Burnham K.P., Laake J.L., Borchers D.L., Thomas L. (Eds.) Advanced distance sampling. Oxford University Press, pp. 71–107.
  • Van Belle G., Hughes J.P., 1984, Nonparametric tests for trend in water quality. Water Resour. Res. 20, 127–136. [CrossRef]
  • Wood S.N., 2006, Generalized additive models; an introduction with R. Chapman & Hall/CRC, Boca Raton.
  • Yu Y.-S., Zou S., Whittemore D., 1993, Non-parametric trend analysis of water quality data of rivers in Kansas. J. Hydrol. 150, 61–80. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.