Aquat. Living Resour.
Volume 22, Number 2, April-June 2009
Fish Stock Assessments Using Surveys and Indicators
Page(s) 233 - 241
Published online 17 June 2009
  • Abella A., Caddy J.F., Serena F., 1997, Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by hake fishery in the Mediterranean. Aquat. Living Resour. 10, 257–269. [CrossRef] [EDP Sciences] [Google Scholar]
  • Abella A., Belluscio A., Bertrand J., Carbonara P., Giordano D., Sbrana M., Zamboni A., 1999, Use of MEDITS data and commercial fleet information for the assessment of some Mediterranean demersal resources. Aquat. Living Resour. 12, 155–166. [CrossRef] [EDP Sciences] [Google Scholar]
  • Alegrìa-Hernandez V., Jukic S., 1988, Stock-recruitment relationship for the hake (Merluccius merluccius L.) from the open middle Adriatic-Jabuka Pit. FAO Fish. Rep. 394, 137–141. [Google Scholar]
  • Anonymous, 2002, Stock assessment in the Mediterranean. Final Report EU Project No. 99/047. [Google Scholar]
  • Anonymous, 2007, Programma Operativo FEP per il settore pesca, Italia, CCI: 2007IT14FPO001, 178 pp. [Google Scholar]
  • Bull B., Francis R.I.C.C., Dunn A., McKenzie A., Gilbert D.J., Smith M.H., 2005, CASAL (C++ algorithmic stock assessment laboratory): CASAL User Manual v2.07- 2005/08/21. NIWA Tech. Rep. 127. [Google Scholar]
  • Butterworth D.S., 2007, Why a management procedure approach? Some positives and negatives. ICES J. Mar. Sci. 64, 613–617. [CrossRef] [Google Scholar]
  • Butterworth D.S., A.E. Punt, 1999, Experiences in the evaluation and implementation of management procedures. ICES J. Mar. Sci. 56, 985–998. [Google Scholar]
  • Beare D.J., Needle C.L., Burns F. Reid D.G., 2005, Using survey data independently from commercial data in stock assessment: an example using haddock in ICES Division VIa. ICES J. Mar. Sci. 62, 996–1005. [CrossRef] [Google Scholar]
  • Beverton R.J.H., Holt S.J., 1957, On the dynamics of exploited fish populations. UK Min. Agric. Fish., Fish. Invest. (Ser. 2) No. 19. [Google Scholar]
  • Barrowman N.J., Myers R.A., 2000, Still more spawner-recruitment curves: the hockey stick and its generalizations. Can. J. Fish. Aquat. Sci. 57, 665–676. [CrossRef] [Google Scholar]
  • Caddy J.F., 1991, Death rates and time intervals: is there an alternative to the constant natural mortality rate axiom? Rev. Fish Biol. Fish. 1, 109–138. [CrossRef] [Google Scholar]
  • Caddy J.F., 2006, The potential use of indicators, reference points and the traffic light convention for managing Black Sea fisheries. In: Lembo G. (Ed.) Selected papers presented at the Workshop on biological reference points. Rome, 20-21 April 2004. General Fisheries Commission for the Mediterranean. Studies and Reviews No. 83. Rome, FAO. [Google Scholar]
  • Chen S., Watanabe S., 1989, Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gakkaishi 55, 205–208. [Google Scholar]
  • Cotter J., Petitgas P., Abella A., Apostolaki P., Mesnil B., Politou C.Y, Rivoirard J., Rochet M.J., Spedicato M,. Trenkel V.M, Woillez M., 2009, Towards an ecosystem approach to fisheries management (EAFM) when trawl surveys provide the main source of information. Aquat. Living Resour. 22, 243–254. [CrossRef] [EDP Sciences] [Google Scholar]
  • Darby C.D., Flatman S. 1994, Lowestoft VPA Suite Version 3.1 User Guide. MAFF: Lowestoft. [Google Scholar]
  • De Lara M., Doyen L., Guilbaud T., Rochet M.J., 2007, Is a management framework based on spawning-stock biomass indicators sustainable? A viability approach. ICES J. Mar. Sci. 64, 1–7. [Google Scholar]
  • De Oliveira J.A.A, Kell L.T., Punt A.E., Roel B.A., Butterworth D.S., 2008, Managing without best predictions: the management strategy evaluation framework. In: Payne A., Cotter J., Potter T. (Eds.) Advances in Fisheries Science. 50 years on from Beverton and Holt. Blackwell Publishing, Oxford, pp. 104–134. [Google Scholar]
  • FAO, 1996, Technical Guidelines for Responsible Fisheries. No. 2. Rome, FAO: 54p. [Google Scholar]
  • FAO, 2003, The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries. No. 4, Suppl. 2. Rome. [Google Scholar]
  • Gallucci V.F., Saila S.B., Gustafson J., Rothschild B.J. (Eds.). 1996, Stock assessment: quantitative methods and applications for small-scale fisheries. CRC Press, Lewis Publishers. [Google Scholar]
  • Gulland J.A., 1969, Manuel des méthodes d'évaluation des stocks d'animaux aquatiques. Première partie-Analyse des populations. Manuels FAO de science halieutique, N° 4. [Google Scholar]
  • Haddon M., 2001, Modelling and quantitative methods in fisheries. Chapman & Hall CRC Press. [Google Scholar]
  • Haltuch M.A., Punt, A.E., Dorn M.W., 2008, Evaluating alternative estimators of fishery management reference points. Fish. Res. 94, 210–303. [CrossRef] [Google Scholar]
  • Hilborn R., Walters C.J., 1992, Quantitative Fisheries Stock Assessment. Choice, Dynamics & Uncertainty. Chapman & Hall. [Google Scholar]
  • Hoggarth D.D., Abeyasekera S., Arthur R.I., Beddington J.R., Burn, R.W., Halls A.S., Kirkwood G.P., McAllister M., Medley P., Mees C.C., Parkes G.B., Pilling G.M., Wakeford R.C., Welcomme R.L., 2006, Stock assessment for fishery management – A framework guide to the stock assessment tools of the fisheries management science programme (FMSP). FAO Fish. Tech. Pap. No. 487, Rome, FAO. [Google Scholar]
  • Kell L.T., O'Brien C.M., Smith M.T., Stokes T.K., Rackham B.D., 1999, An evaluation of management procedures for implementing a precautionary approach in the ICES context for North Sea plaice (Pleuronectes platessa L.). ICES J. Mar. Sci. 56, 834–845. [CrossRef] [Google Scholar]
  • Kell L.T., Mosqueira I., Grosjean P., Fromentin J.M., Garcia D., Hillary R., Jardim E., Mardle S., Pastoors M.A., Poos J.J., Scott F., Scott R.D., 2007, FLR: an open-source framework for the evaluation and development of management strategies. ICES J. Mar. Sci. 64, 640–646. [Google Scholar]
  • ICES, 1995, Report of the Working Group on Long-term Management Measures. ICES CM 1995/Assess.15. [Google Scholar]
  • Levi D., Andreoli M.G., Bonanno A., Fiorentino F., Garofalo G., Mazzola S., Norrito G., Patti B., Pernice G., Ragonese S., Giusto G.B., Rizzo P., 2003, Embedding sea surface temperature anomalies into the stock recruitment relationship of red mullet (Mullus barbatus L. 1758) in the Strait of Sicily. Scient. Mar. 67, 259–268. [Google Scholar]
  • Lembo G., Spedicato M.T,. 2006, Red mullet assessment in the GSA 10 using ALADYM simulation model. Sub-Committee Stock Assessment SAC-GFCM, FAO Headquarters, 11-14 Sept. 2006. [Google Scholar]
  • Lembo G., Martino S., Abella A.J., Fiorentino F., Spedicato M.T., 2007, ALADYM (Age-Length Based Dynamic Model): a stochastic simulation tool to predict population dynamics and management scenarios using fishery-independent information. Workshop on trawl survey based monitoring fishery system in the Mediterranean, GFCM, FAO, 26–28 March 2007. [Google Scholar]
  • Lleonart J., Salat J., 1997, VIT: Software for fishery analysis,. User's manual. FAO Computerised Information, Ser. Fish. 11. [Google Scholar]
  • McGarvey R., Feenstra J., Ye Q., 2007, Modeling fish number dynamically by age and length: partitioning cohort into “slices”. Can. J. Fish. Aquatic. Sci. 64, 1157-1173. [CrossRef] [Google Scholar]
  • Mesnil B., 2003, The catch-survey analysis (CSA) method of fish stock assessment: an evaluation using simulated data. Fish. Res. 63, 193-212 [CrossRef] [Google Scholar]
  • Mesnil B., Cotter J., Fryer R.J., Coby L. Needle C.L., Trenkel V.M., 2009, A review of fishery-independent assessment models, and initial evaluation based on simulated data. Aquat. Living Resour. 22, 207–216. [CrossRef] [EDP Sciences] [Google Scholar]
  • Methot R.D., 2000, Technical description of the stock synthesis assessment program. NOAA Technical Memorandum NMFS{NWFSC{43. publications/techmemos/tm43/tm43.pdf [Google Scholar]
  • Needle C.L. 2003, Survey-based assessments with surba. Working Document to the ICES Working Group on Methods of Fish Stock Assessment, Copenhagen, 29 Jan.–5 Febr. 2003. [Google Scholar]
  • Quinn T.J.II,. Deriso R.B., 1999, Quantitative fish dynamics. Oxford University Press, Oxford. [Google Scholar]
  • Pastoors M.A., Poos J.J., Kraak S.B.M., Machiels M.A.M., 2007, Validating management simulation models and implications for communicating results to stakeholders. ICES J. Mar. Sci. 64, 818–824. [Google Scholar]
  • Pilling G.M., Apostolaki P., Failler P., Floros C., Large P.A., Morales-Nin B., Reglero P., Stergiou K.I., Tsikliras A.C., 2008, Assessment and management of data-poor fisheries. In: Payne A., Cotter J., Potter T. (Eds.) Advances in Fisheries Science. 50 years on from Beverton and Holt. Blackwell Publishing, Oxford, pp. 280–305. [Google Scholar]
  • Pope J.G., 1972, An investigation on the accuracy of virtual population analysis using cohort analysis. Int. Comm. Northw. Atl. Fish. Res. Bull. 9, 65–74. [Google Scholar]
  • Porch C.E., Eklund A.M., Scott G.P., 2006, A catch-free stock assessment model with application to goliath grouper (Epinephelus itajara) off southern Florida. Fish. Bull. 104, 89–101. [Google Scholar]
  • Prager M., 2005, Users Manual for ASPIC: A Stock-Production Model Incorporating Covariates (vers.5), NMFS, Beaufort Lab. Doc. BL-2004-01. [Google Scholar]
  • Punt A.E., Hilborn R., 1996, Biomass dynamic models. User's manual. FAO Computerized Information Series (Fisheries) No. 10. Rome, FAO. [Google Scholar]
  • Punt A.E., 2003, Evaluating the efficacy of managing West Coast groundfish resources through simulations. Fish. Bull. 101, 860–873. [Google Scholar]
  • Ricker W.E., 1954, Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623. [Google Scholar]
  • Shepherd J.G., 1982, A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves. J. Cons. Explor. Mer 40, 67–75. [Google Scholar]
  • Sinclair A.F., 2001, Natural mortality of cod (Gadus morhua) in the Southern Gulf of St Lawrence. ICES J. Mar. Sci. 58, 1–10. [CrossRef] [Google Scholar]
  • Sparre P., Venema S.C., 1998, Introduction to tropical fish stock assessment. Part 1, manual. FAO Fish. Techn. Pap. 306 Rev. 2. [Google Scholar]
  • Skagen D.W., Dankel D. 2007, Management with sparse data. ICES CM 2007/O:22. [Google Scholar]
  • Thompson W.F., Bell F.H., 1934, Biological statistics of the Pacific halibut fishery. 2. Effect of changes in intensity upon total yield and yield per unit of gear. Rep. Int. Fish. (Pacific Halibut) Comm. N°8. [Google Scholar]
  • Trenkel V.M., 2008, A two-stage biomass random effects model for stock assessment without catches: What can be estimated using only survey biomass indices? Can. J. Fish. Aquat. Sci. 65, 1024–1035. [CrossRef] [Google Scholar]
  • Trenkel V.M., Rochet M.J., Mesnil B., 2007, From model-based prescriptive advice to indicator-based interactive advice. ICES J. Mar. Sci. 64, 768–774. [CrossRef] [Google Scholar]
  • Ulrich C., Andersen B.S., Sparre P.J., Nielsen J.R., 2007, TEMAS: fleet-based bio-economic simulation software to evaluate management strategies accounting for fleet behaviour. ICES J. Mar. Sci. 64, 647–651. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.