Highlight
Free Access
Issue
Aquat. Living Resour.
Volume 19, Number 1, January-March 2006
Page(s) 15 - 29
DOI https://doi.org/10.1051/alr:2006002
Published online 01 April 2006
  • Abbes R., 1991, Atlas des ressources et des pêches françaises dans les mers européennes, Rennes, Editions Ouest-France.
  • Botsford L., Castilla J., Peterson C., 1997, The management of fisheries and marine ecosystems. Science 277, 509-515. [CrossRef]
  • Charuau A., Biseau A., 1989, Étude d'une gestion optimale des pêcheries de langoustines et de poissons démersaux en mer Celtique. Rapp. interne, DRV-89.009 - Tome 2, IFREMER/RH.
  • Commission of the European Communities, 2001a, Règlement (CE) No. 2602/2001 de la Commission du 27 décembre 2001 instituant des mesures visant à reconstituer le stock de merlu dans les sous-zones CIEM III, IV, V, VI et VII et les divisions CIEM VIII a, b, d et e. J. off. Communautés européennes L345, 49-51.
  • Commission of the European Communities, 2001b, Règlement (CE) No. 1162/2001 de la Commission du 14 juin 2001 instituant des mesures visant à reconstituer le stock de merlu dans les sous-zones CIEM III, IV, V, VI et VII et les divisions CIEM VIII a, b, d et e ainsi que les conditions associées pour le contrôle des activités des navires de pêche. J. off. Communautés européennes L159, 4-9.
  • Commission of the European Communities, 2001c, Selectivity and gear technology for Northern hake stock. SEC (2001) 1195, CE.
  • Commission of the European Communities, 2002, Règlement (CE) No. 494/2002 de la Commission du 19 mars 2002 instituant des mesures techniques supplémentaires visant à reconstituer le stock de merlu dans les sous-zones CIEM III, IV, V, VI et VII et les sous-divisions CIEM VIII a, b, d et e. J. off. Communautés européennes 8-10.
  • Commission of the European Communities, 2004, Règlement (CE) No. 811/2004 du Conseil du 21 avril 2004 instituant des mesures de reconstitution du stock de merlu du nord. J. off. Communautés européennes L150, 1-86.
  • De Castro L.A.B., Petrere Jr. M., Commune A.E., 2001, Sensitivity of the BEAM4 fisheries bio-economic model to the main biological input parameters. Ecol. Model. 141, 53-66. [CrossRef]
  • De Pontual H., Bertignac M., Battaglia A., Bavouzet G., Moguedet P., Groison A.L., 2003, A pilot tagging experiment on European hake (Merluccius merluccius): methodology and preliminary results. ICES J. Mar. Sci. 60, 1318-1327. [CrossRef]
  • Direction des Pêches maritimes / OFIMER, 2003, Bilan annuel de production 2002 des Pêches et de l'Aquaculture. Rapp. Div. Observatoire économique et Entreprise, Paris, DPM / OFIMER.
  • Droesbeke J.J., Fine J., Saporta G., 1997, Plans d'expériences: applications à l'entreprise, Paris, Editions Technip.
  • Drouineau H., 2004, Paramétrage et développement d'un plan de simulation de l'outil de simulation ISIS-Fish pour évaluer l'impact de différentes réglementations de l'activité de pêche de la pêcherie mixte merlu-langoustine de la Grande Vasière. Mémoire DAA, Halieutique, Agrocampus Rennes, p. 62.
  • Elkalay K., Frangoulis C., Skliris N., Goffart A., Gobert S., Lepoint G., Hecq J.H., 2003, A model of the seasonal dynamics of biomass and production of the seagrass Posidonia oceanica in the Bay of Calvi (Northwestern Mediterranean). Ecol. Model. 167, 1-18. [CrossRef]
  • FAO, 2000, Fisheries Department, Fishery Information, Data and Statistics Unit. Fishstat Plus: Universal software for statistical time series, Version 2.3.
  • Guichet R., 1996, Le merlu européen (Merluccius merluccius L.). Rapp. interne DRV. 96-04, Direction des Ressources Vivantes, Nantes, IFREMER.
  • Gulland J.A., 1983, Fish stock assessment: A manual of basic methods. New York, John Wiley.
  • Guyon G., Rahni N., 1997, Validation of a building thermal model in CLIM2000 simulation software using full-scale experimental data, sensitivity analysis and uncertainty analysis. In: Spitler J.D., Hensen J. (Eds.) Proc. 5th Int. IBPSA Building Simulation'97 Conf. Sept. 8-10, Prague, Vol. 2, pp. 47-54.
  • Henderson-Sellers B., Henderson-Sellers A., 1996, Sensitivity evaluation of environmental model using fractional factorial experimentation. Ecol. Model. 86, 291-295. [CrossRef]
  • Hilborn R., Walters C.J., 1992, Quantitative Fisheries Stock Assessment. New York, Chapman & Hall.
  • Holland D.S., 2000, A bioeconomic model of marine sanctuaries on Georges Bank. Can. J. Fish. Aquat. Sci. 57, 1307-1319. [CrossRef]
  • Holland D.S., 2003, Integrating spatial management measures into traditional fishery management systems: the case of the Georges Bank multispecies groundfish fishery. ICES J. Mar. Sci. 60, 915-929. [CrossRef]
  • ICES, 1992, Report of the Working Group on the fisheries units in sub areas VII and VIII. ICES Doc. CM 1992/G:15.
  • ICES, 2003a, Report of the Study Group on precautionary reference points for advice on fishery management. ICES CM 2003/ACFM:15.
  • ICES, 2003b, Report of the Working Group on Nephrops stocks. ICES CM 2003/ACFM:18.
  • ICES, 2003c, Report of the Working Group on the assessment of southern shelf stocks of hake, monk and megrim. ICES CM 2004/ACFM:02.
  • ICES, 2004, Report of the ICES Advisory Committee on fishery management and advisory committee on ecosystems, 2004, ICES Advice Vol., No 2.
  • Ivanova T., Malone L., Mollaghasemi M., 1999, Comparison of a two-stage group-screening design to a standard 2k-p design for a whole-line semiconductor manufacturing simulation model. In: Farrington P.A., Nembhard H.B., Sturrock D.T., Evans G.W. (Eds.), Proc. 1999 Winter Simulation Conf., Phoenix AZ, IEEE, 1, pp. 640-646.
  • Jamieson G.S., Levings C.O., 2001, Marine protected areas in Canada – implications for both conservation and fisheries management. Can. J. Fish. Aquat. Sci. 58, 138-156. [CrossRef]
  • Kleijnen J.P.C., 1987, Statistical tools for simulation practitioners. New York, Marcel Dekker Inc. Publ.
  • Kleijnen J.P.C., 1998, Experimental design for sensitivity analysis, optimization, and validation of simulations model. In: Banks J. (Eds.), Handbook of simulation: principles, methodology, advances, applications, and practice. New York, Wiley. Engineering & Management Press, pp. 173-224.
  • Mahévas S., Pelletier D., 2004, ISIS-Fish, a generic and spatially explicit simulation tool for evaluating the impact of management measures on fisheries dynamics. Ecol. Model. 171, 65-84. [CrossRef]
  • Matsushita B., Xu M., Chen J., Kameyama S., Tamura M., 2004, Estimation of regional net primary productivity (NPP) using a process-based ecosystem model: How important is the accuracy of climate data? Ecol. Model. 178, 371-388. [CrossRef]
  • Maury O., Gascuel D., 1999, SHADYS (“Simulateur HAlieutique de DYnamiques Spatiales”), a GIS based numerical model of fisheries. Example application: the study of a marine protected area. Aquat. Living Resour. 12, 77-88.
  • Morizur Y., Conan G., Guénolé A., Omnes M.H., 1981, Fécondité de Nephrops norvegicus dans le golfe de Gasgogne. Mar. Biol. 63, 319-324. [CrossRef]
  • Murawski S.A., Stewart P., 1996, Report of the symposium on gear selectivity and technical interactions in mixed species fisheries. J. Northw. Atl. Fish. Sci. 19, 7-10.
  • Murua H., Lucio P., 1998, Reproductive modality and batch fecundity of the European hake (Merluccius merluccius L.) in the Bay of Biscay. Calif. Coop. Ocean. Fish. Investig. Rep. 39, 196-203.
  • NIST/SEMATECH, 2004, e-Handbook of Statistical Methods. Available on line at http://www.itl.nist.gov/div898/ handbook/.
  • Pelletier D., 1990, Sensitivity and variance estimators for virtual population analysis and the equilibrium yield-per-recruit model. Aquat. Living Resour. 3, 1-12. [CrossRef] [EDP Sciences]
  • Pelletier D., Gros P., 1991, Assessing the impact of sampling error on model-based management advice: comparison of equilibrium yield-per-recruit variance estimators. Can. J. Fish. Aquat. Sci. 49, 2129-2139. [CrossRef]
  • Pelletier D., Laurec A., 1992, Management under uncertainty: defining strategies for reducing overexploitation. ICES J. Mar. Sci. 49, 389-401. [CrossRef]
  • Pelletier D., Magal P., 1996, Dynamics of a migratory population under different fishing effort allocation schemes in time and space. Can J. Fish. Aquat. Sci. 53, 1186-1199. [CrossRef]
  • Pelletier D., Mahévas S., Poussin B., Bayon J., André P., Royer J.C., 2001, A conceptual model for evaluating the impact of spatial management measures on the dynamics of a mixed fishery. In: Kruse G.H., Bez N., Booth A., Dorn M.W., Hills S., Lipcius R.N., Pelletier D., Roy C., Smith S.J., Witherell D. (Eds.), Spatial Processes and Management of Marine Populations, Anchorage, University of Alaska Sea Grant, AK-SG-01-02, pp. 53-66.
  • Pet J.S., Machiels M.A.M., Densen W.L.T.V., 1996, A size-structured simulation model for evaluating management strategies in gillnet fisheries exploiting spatially differentiated populations. Ecol. Model. 88, 195-214. [CrossRef]
  • Quéro J.C., Vayne J.J., 1997, Les poissons de mer des pêches françaises, Paris, Delachaux et Niestlé.
  • Quéro J.C., Vayne J.J., 1998, Les fruits de la mer et plantes marines des pêches françaises, Paris, Delachaux et Niestlé.
  • Ruget F., Brisson N., Delécolle R., Faivre R., 2002, Sensitivity analysis of a crop simulation model, STICS, in order to choose the main parameters to be estimated. Agronomie 22, 133-158. [CrossRef] [EDP Sciences]
  • Safina C., 1995, The world's imperiled fish. Sci. Am. 273, 46-53. [CrossRef]
  • Sumaila U.R., Guénette S., Alder J., Chuenpadgee R., 2000, Addressing ecosystem effects of fishing using marine protected areas. ICES J. Mar. Sci. 57, 752-760. [CrossRef]
  • Trenkel V.M., Lorance P., Mahévas S., 2004, Do visual transects provide true population density estimates for deepwater fish? ICES J. Mar. Sci. 61, 1050-1056.
  • Verdoit M., Pelletier D., Talidec C., 1999, A growth model that incorporates individual variability for the Norway lobster population (Nephrops norvegicus L., 1758) of the Bay of Biscay. ICES J. Mar. Sci. 56, 734-745. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.