Free Access
Issue
Aquat. Living Resour.
Volume 18, Number 1, January-March 2005
Page(s) 65 - 69
DOI https://doi.org/10.1051/alr:2005006
Published online 15 March 2005
  • Barbat-Leterrier A., Guyomard R., Krieg F., 1989, Introgression between introduced domesticated strains and mediterranean native populations of brown trout (Salmo trutta L.). Aquat. Living Resour. 2, 215-223. [CrossRef] [EDP Sciences] [Google Scholar]
  • Baglinière J.L., Ombredane D., Marchand F., 2000, Critères morphologiques pour l'identification des deux formes (rivière et mer) de truite (Salmo trutta L.) présentes sur un même bassin. Bull. Fr. Pêche Piscic. 357/358, 375-386. [Google Scholar]
  • Belkir K., 2000, GENETIX 4.03, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier, France. [Google Scholar]
  • Campbell J.S., 1977, Spawning characteristics of brown trout and sea trout Salmo trutta L. in Kirk Burn, River Tweed, Scotland. J. Fish Biol. 11, 217-229. [CrossRef] [Google Scholar]
  • Charles K., Roussel J.-M., Cunjak R.A., 2004, Estimating the contribution of sympatric anadromous and freshwater resident brown trout to juvenile production. Mar. Freshwater Res. 55, 185-191. [CrossRef] [Google Scholar]
  • Cornuet J.-M., Piry S., Luikart G., Estoup A., Solignac M., 1999, New methods employing multilocus genotypes to select or exclude populations as origin of individuals. Genetics 153, 1989-2000. [PubMed] [Google Scholar]
  • Cross T.F., Mills C.P.R., De Courcy Williams M. 1992, An intensive study of allozyme variation in freshwater resident and andromous trout Salmo trutta L., in western Ireland. J. Fish Biol. 40, 25-32. [Google Scholar]
  • Debowski P., Glogowski J., Dobosz S., Robak S., 1999, Gill Na+-K+ ATPase activity and body silvering as indices of smoltification of hatchery-reared sea trout (Salmo trutta m. trutta L.). Arch. Ryb. Pol. 7, 245-256. [Google Scholar]
  • Elliot J.M. 1994, Quantitative ecology and the brown trout. Oxford: Oxford University Press. [Google Scholar]
  • Estoup A., Largiadère C.R., Perrot E., Chourrout D., 1996, Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol. Mar. Biol. Biotechnol. 5, 4, 295-298. [Google Scholar]
  • Estoup A., Rousset F., Michalakis Y., Cornuet J.M., Andriamanga M., Guyomard R., 1998, Comparative analysis of microsatellite and allozyme markers: A case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol. 7, 339-353. [Google Scholar]
  • Euzenat G., Fournel F., Richard A., 1999, Sea trout (Salmo trutta L.) in Normandy and Picardy. In: Baglinière J.-L., Maisse G. (Eds.), Biology and Ecology of the brown trout and sea trout, Praxis, pp. 175-205. [Google Scholar]
  • Ferguson A., 1989, Genetic differences among brown trout, Salmo trutta L., stocks and their importance for the conservation and the management of the species. Freshwater Biol. 21, 35-46. [CrossRef] [Google Scholar]
  • Ferguson A., Taggart J.B., Prodöhl P.A., McMeel O., Thompson C., Stone C., Mc Ginnity P., Hynes R.A., 1995, The application of molecular markers to the study and conservation of fish populations with special references to Salmo. J. Fish Biol. 47, 103-126. [Google Scholar]
  • Foote C.J., Wood C.C., Withler R.E., 1989, Biochemical genetic comparison of sockeye salmon and kokanee, the anadromous and nonanadromous forms of Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 46, 149-158. [CrossRef] [Google Scholar]
  • Fritzner N.G., Hansen M.M., Madsen S.S., Kristiansen K., 2001, Use of microsatellite markers for identification of indigenous brown trout in a geographical region heavily influenced by stocked domesticated trout. J. Fish Biol. 58, 1197-1210. [Google Scholar]
  • Frost W.E., Brown M.E., 1967, The Trout. London, Collins. [Google Scholar]
  • Gouraud V., 1999, Étude de la dynamique de populations de truite commune (Salmo trutta L.) à l'aide d'un modèle déterministe. Application sur un bassin Bas-Normand et sur un bassin Pyrénéen. Thèse ENGREF Centre de Paris. [Google Scholar]
  • Guyomard R., Grévisse C., Oury F.X., Davaine, P., 1984, Évolution de la variabilité génétique inter et intra-populations de populations de Salmonidés issues de mêmes pools géniques. Can. J. Fish. Aquat. Sci. 41, 1024-1029. [CrossRef] [Google Scholar]
  • Hansen M.M., Ruzzante D.E., Nielsen E.E., Mensberg K.-L., 2000, Microsatellite and mitochondrial DNA polymorphism reveals life-history dependent interbreeding between hatchery and wild brown trout (Salmo trutta L.). Mol. Ecol. 9, 583-594. [CrossRef] [PubMed] [Google Scholar]
  • Hansen M.M., Ruzzante D.E., Nielsen E.E., Mensberg K.-L., 2001, Brown trout (Salmo trutta L.) stocking impact assessment using microsatellite DNA markers. Ecol. Appl. 11, 148-160. [Google Scholar]
  • Hauser L., Beaumont A.R., Marshall G.T.H., Wyatt R.J., 1991, Effects of trout stocking on the population genetics of landlocked brown trout, Salmo trutta L., in the Conwy River system, North Wales, U.K. J. Fish Biol. 39 (suppl. A), 109-116. [Google Scholar]
  • Hindar K., 1986, Genetic differentiation among local populations and morphotypes of Artic charr, Salvelinus alpinus. Biol. J. Linn. Soc. 27, 269-285. [CrossRef] [Google Scholar]
  • Hindar K., Jonsson B., Ryman N., Stahl G., 1991a, Genetic relationships among landlocked, resident and anadromous Brown trout, Salmo trutta L. Heredity 66, 83-91. [CrossRef] [Google Scholar]
  • Hindar K., Ryman N., Utter F., 1991b, Genetic effects of cultured fish on the natural fish populations. Can. J. Fish Aquat. Sci. 48, 945-957. [Google Scholar]
  • Jonsson B., 1982, Diadromous and resident trout Salmo trutta L.: Is their difference due to genetics? Oikos 38, 297-300. [CrossRef] [Google Scholar]
  • Jonsson B., Jonsson N., 2001, Polymorphism and speciation in Arctic charr. J. Fish Biol. 58, 3, 605-638. [Google Scholar]
  • Klemetsen A., Elliott J.M., Knudsen R., Sorensen P., 2002, Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. J. Fish Biol. 60, 933-950. [CrossRef] [Google Scholar]
  • Krieg F., Guyomard R., 1985, Population genetics of French brown trout (Salmo trutta L.): large geographical differentiation of wild populations and high similarity of domesticated stocks. Génét. Sélect. Evol. 17, 225-242. [CrossRef] [Google Scholar]
  • Krueger C.C., May B. 1987, Stock identification of naturalized brown trout in Lake Superior Tributaries: Differentiation based on allozymes data. Trans. Am. Fish. Soc. 116, 785-794. [Google Scholar]
  • Launey S., Krieg F., Haffray P., Bruant J.S., Vannier A., Guyomard R., 2003, Twelve new microsatellite markers for gilted seabream (Sparus aurata L.): Characterization, polymorphism and linkage. Mol. Ecol. Notes 3, 457-459. [CrossRef] [Google Scholar]
  • Mills D., 1971, Salmon and Trout: a resource, its ecology, conservation and management. Oliver Boyd Edn. [Google Scholar]
  • Näslund I., 1993, Migratory behaviour of brown trout, Salmo trutta L.: Importance of genetic and environmental influences. Ecol. Freshwater Fish 2, 51-57. [CrossRef] [Google Scholar]
  • Nielsen J.L., Fountain M.C., 1999, Microsatellite diversity in sympatric reproductive ecotypes of Pacific steelhead (Oncorhynchus mykiss W.) from the Middle Fork Eel River, California. Ecol. Freshwater Fish 8, 159-168. [CrossRef] [Google Scholar]
  • Nordeng H., 1983, Solution to the “Char problem” based on Arctic Char (Salvelinus alpinus) in Norway. Can. J. Fish. Aquat. Sci. 40, 1372-1387. [CrossRef] [Google Scholar]
  • Northcote T.G., 1992, Migration and residency in stream Salmonids – some ecological considerations and evolutionary consequences. Nordic J. Freshwater Res. 67, 5-17. [Google Scholar]
  • Ombredane D., Siegler L., Baglinière J.-L., Prunet P., 1996, Migration et smoltification des juvéniles de truites (Salmo trutta) dans deux cours d'eau de Basse-Normandie. Cybium 20, 3, 27-42. [Google Scholar]
  • Palm S., Ryman N., 1999, Genetic basis of phenotypic differences between transplanted stocks of brown trout. Ecol. Freshwater Fish 8, 169-180. [CrossRef] [Google Scholar]
  • Palm S., Dannewitz J., Järvi T., Petersson E., Prestegaard T., Ryman N. 2003, Lack of molecular genetic divergence between sea-ranched and wild trout (Salmo trutta). Mol. Ecol. 12, 2057-2071. [Google Scholar]
  • Pettersson J.C.E., Hansen M.M., Bohlin T., 2001, Does dispersal from landlocked trout explain the coexistence of resident and migratory trout females in a small stream? J. Fish Biol. 58, 487-495. [CrossRef] [Google Scholar]
  • Raymond M., Rousset F., 1995, GENEPOP (version 1.2): Population genetics software for exact tests and ecumenism. J. Hered. 86, 248-249. [Google Scholar]
  • Schneider S., Roessli D., Excoffier L., 2000, Arlequin vers. 2.000. http://lgb.unige.ch/arlequin/. [Google Scholar]
  • Skaala Ø., Nævdal G., 1989, Genetic differentiation between freshwater resident and anadromous brown trout, Salmo trutta L., within watercourses. J. Fish Biol. 34, 597-605. [CrossRef] [Google Scholar]
  • Skrochowska S., 1969, Migrations of the sea-trout (Salmo trutta L.), brown trout (Salmo trutta M. fario L.) and their crosses. Part IV. General discussion of results. Pol. Arch. Hydrobiol. 16, 29, 181-192. [Google Scholar]
  • Verspoor E., Cole L.J., 1989, Genetically distinct sympatric populations of resident and andromous Atlantic salmon, Salmo salar. Can. J. Zool. 67, 1453-1461. [CrossRef] [Google Scholar]
  • Vuorinen J., Berg O.K., 1989, Genetic divergence of anadromous and nonanadromous Atlantic Salmon (Salmo salar) in the River Namsen, Norway. Can. J. Fish. Aquat. Sci. 46, 406-409. [CrossRef] [Google Scholar]
  • Wood C.C., Foote C.J., 1996, Evidence for sympatric genetic divergence of anadromous and non anadromous morphs of Sockeye salmon (Oncorhynchus nerka). Evolution 50, 3, 1265-1279. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.