Free Access
Issue
Aquat. Living Resour.
Volume 18, Number 1, January-March 2005
Page(s) 71 - 76
DOI https://doi.org/10.1051/alr:2005007
Published online 15 March 2005
  • Allegrucci G., Fortunato C., Sbordoni V., 1997, Genetic structure and allozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean sea. Mar. Biol. 128, 347-358. [CrossRef] [Google Scholar]
  • Bahri-Sfar L., Lemaire C., Ben Hassine O.K., Bonhomme F., 2000, Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. Lond. B 267, 929-935. [Google Scholar]
  • Barnabé G., René F., 1972, Reproduction contrôlée du loup Dicentrarchus labrax (Linné) et production en masse d'alevins. C.R. Acad. Sci. Paris D 275, 2741-2744. [Google Scholar]
  • Barnabé G., 1971, Premiers résultats sur l'induction de la ponte de Dicentrarchus labrax. Rapp. CNEXO, Brest, pp. 1-10. [Google Scholar]
  • Belkhir K., Borsa P., Goudet J., Chikhi L., Bonhomme F., 2001, Genetix v. 4.02. Logiciel sous Windows TM pour la génétique des Populations. Montpellier, France : Laboratoire Génome et Populations, Université de Montpellier 2. [Google Scholar]
  • Berrebi P., Povz M., Jesensek D., Cattaneo-Berrebi G., Crivelli A.J., 2000a, The genetic diversity of native, stocked and hybrid populations of marble trout in the Soca river, Slovenia. Heredity 85, 277-287. [CrossRef] [PubMed] [Google Scholar]
  • Felsenstein J., 1993, Phylip 3.6, phylogeny inference package. Seattle, WA: University of Washington. [Google Scholar]
  • Ferguson A., Taggart J.B., Prodohl P.A., McMeel O., Thompson C., Stone C., Mcginnity P., Hynes R.A., 1995, Population and conservation: The application of molecular markers to the study and the conservation of fish populations, with special reference to salmo. J. Fish Biol. 47 (Suppl. A), 103-126. [Google Scholar]
  • Fleming I.A., Hindar K., Mjolnerod I.B., Jonsson B., Balstad T., Lamberg A., 2000, Lifetime success and interactions of farm salmon invading a native population. Proc. R. Soc. Lond. B 267 (1452), 1517-1523. [Google Scholar]
  • Garcia De Leon F.J., Chikhi L., Bonhomme F., 1997, Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758). Mol. Ecol. 6, 51-62. [Google Scholar]
  • Guyomard R., 1989, Diversité génétique de la truite commune. Bull. Fr. Pêche Piscic. 314, 118-135. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hansen M., Ruzzante D.E., Nielsen E.E., Mensberg K.D., 2000, Microsatellite and mitochondrial DNA polymorphism reveals life-history dependent interbreeding between hatchery and wild brown trout (Salmo trutta L.). Mol. Ecol. 9, 583-594. [CrossRef] [PubMed] [Google Scholar]
  • Martinez J.L., Dumas J., Beall E., Vazquez E.G., 2001, Assessing introgression of foreign strains in wild Atlantic salmon populations: Variation in microsatellites assessed in historic scale collections. Freshwater Biol. 46, 835-844. [CrossRef] [Google Scholar]
  • McGinnity P., Stone C., Taggart J.B., Cooke D., Cotter D., Hynes R., McCamley C., Cross T., Ferguson A., 1997, Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: Use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J. Mar. Sci. 54, 998-1008. [Google Scholar]
  • McGinnity P., Prodo P., Ferguson A., Hynes R., Maoile'idigh N., Baker N., Cotter D., O'Hea B., Cooke D., Rogan G., Taggart J., Cross T., 2003, Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc. R. Soc. Lond. B 270, 2443–2450. [Google Scholar]
  • Naciri M., Lemaire C., Borsa P., Bonhomme F., 1999, Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J. Hered. 90, 591-596. [CrossRef] [Google Scholar]
  • Poteaux C., Bonhomme F., Berrebi P., 1999, Microsatellite polymorphism and genetic impact of restocking in Mediterranean brown trout (Salmo trutta L.). Heredity 82, 645-653. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds J., Weir B., Cockerham C., 1983, Estimation of the coancestry coefficient, basis for a short term genetic distance. Genetics 105, 767-779. [PubMed] [Google Scholar]
  • Rice W., 1989, Analysis tables of statical tests. Evolution 43, 223-225. [CrossRef] [PubMed] [Google Scholar]
  • Saitou N., Nei M., 1987, The neighbor-joining method: A new method for reconstruction phylogenetic trees. Mol. Biol. Evol. 4, 406-425. [Google Scholar]
  • Skaala O., Dahle G., Jorstad K.E., Naevdal G., 1990, Interactions between natural and farmed fish populations: Information from genetic markers. J. Fish Biol. 36, 449-460. [CrossRef] [Google Scholar]
  • Volpe J. P., Taylor E.B., Rimmer D.W., Glickman B.W., 2001, Evidence of natural reproduction of aquaculture-escaped Atlantic salmon in a coastal British Columbia river. Conserv. Biol. 14, 899-903. [CrossRef] [Google Scholar]
  • Weir B., Cockerham C., 1984, Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. [CrossRef] [PubMed] [Google Scholar]
  • Weiss S., Schlötterer C., Waidbacher H., Jungwirth M., 2001, Haplotype (mt DNA) diversity of brown trout Salmo trutta in tributaries of the Austrian Danube: Massive introgression of Atlantic basin fish by man or nature? Mol. Ecol. 10, 1241-1246. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.