Free Access
Issue
Aquat. Living Resour.
Volume 23, Number 2, April-June 2010
Page(s) 199 - 207
DOI https://doi.org/10.1051/alr/2010011
Published online 28 April 2010
  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., Lipman D.J., 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. [CrossRef] [PubMed] [Google Scholar]
  • An H.S., Park J.Y., Lee Y.G., Lee D.S., Lee C., 2005, Ten polymorphic microsatellite loci in the giant scallop (Mizuhopecten yessoensis). Mol. Ecol. Notes 5, 806–808. [CrossRef] [Google Scholar]
  • Arias A., Freire R., Méndez J., Insua A., 2009, Intron characterization and their potential as molecular markers for population studies in the scallops Aequipecten opercularis and Mimachlamys varia. Hereditas 146, 46–57. [CrossRef] [PubMed] [Google Scholar]
  • Arias A., Freire R., Boudry P., Heurtebise S., Méndez J., Insua A., 2009, Single nucleotide polymorphism for population studies in the scallops Aequipecten opercularis and Mimachlamys varia. Conserv. Genet. 10, 1491–1495. [CrossRef] [Google Scholar]
  • Balloux F., Lugon-Moulin N., 2002, The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155–165. [CrossRef] [PubMed] [Google Scholar]
  • Beaumont A., 2006, Genetics. In: Shumway S. E., Parsons G. J. (Eds.) Scallops: biology, ecology and aquaculture. Amsterdam, Elsevier, pp. 543–594. [Google Scholar]
  • Beaumont A.R., 1982, Geographic-variation in allele frequencies at three loci in Chlamys opercularis from Norway to the Brittany Coast. J. Mar. Biol. Assoc. UK 62, 243–261. [CrossRef] [Google Scholar]
  • Beaumont A.R., Beveridge C.M., 1984, Electrophoretic survey of genetic variation in Pecten maximus, Chlamys opercularis, Chlamys varia and Chlamys distorta from the Irish Sea. Mar. Biol. 81, 299–306. [CrossRef] [Google Scholar]
  • Belkhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F., 2004, GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France). Available from: http://www.genetix.univmontp2.fr/genetix/genetix.htm. [Google Scholar]
  • Benson G., 1999, Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. [CrossRef] [PubMed] [Google Scholar]
  • Billote N., Lagoda P.J.L., Risterucci A.M., Baurens F.C., 1999, Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54, 277–288. [Google Scholar]
  • Boudry P., Collet B., Cornette F., Hervouet V., Bonhomme F., 2002, High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204, 283–296. [CrossRef] [Google Scholar]
  • Brand A.R., 2006, The European scallop fisheries for Pecten maximus, Aequipecten opercularis and Mimachlamys varia. In: Shumway S. E., Parsons G. J. (Eds.) Scallops: biology, ecology and aquaculture. Amsterdam, Elsevier, pp. 991–1058. [Google Scholar]
  • Brookfield J.F., 1996, A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455. [PubMed] [Google Scholar]
  • Cabranes C., Fernandez-Rueda P., Martinez J.L., 2008, Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J. Mar. Sci. 65, 12–16. [CrossRef] [Google Scholar]
  • Chambers G.K., MacAvoy E.S., 2000, Microsatellites: consensus and controversy. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 126, 455–476. [CrossRef] [PubMed] [Google Scholar]
  • Chapuis M.P., Estoup A., 2007, Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. [CrossRef] [PubMed] [Google Scholar]
  • Chistiakov D.A., Hellemans B., Volckaert F.A.M., 2006, Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255, 1–29. [CrossRef] [Google Scholar]
  • Cragg S.M., Crisp D.J., 1991, The biology of scallop larvae. In: Shumway S. E. (Ed.) Scallops: Biology, Ecology and Aquaculture. Amsterdam, Elsevier, pp. 75–132. [Google Scholar]
  • Cruz F., Pérez M., Presa P., 2005, Distribution and abundance of microsatellites in the genome of bivalves. Gene 346, 241–247. [CrossRef] [PubMed] [Google Scholar]
  • Diz A.P., Presa P., 2008, Regional patterns of microsatellite variation in Mytilus galloprovincialis from the Iberian Peninsula. Mar. Biol. 154, 277–286. [CrossRef] [Google Scholar]
  • Edwards K.J., Barker J.H.A., Daly A., Jones C., Karp A., 1996, Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20, 758. [PubMed] [Google Scholar]
  • Evans B.S., Knauer J., Taylor J.J.U., Jerry D.R., 2006, Development and characterization of six new microsatellite markers for the silver- or gold-lipped pearl oyster, Pinctada maxima (Pteriidae). Mol. Ecol. Notes 6, 835–837. [CrossRef] [Google Scholar]
  • Excoffier L., Laval G., Schneider S., 2005, Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform, Online 1, 50. [Google Scholar]
  • Fernández-Moreno M., Arias-Pérez A., Freire R., Méndez J., 2008, Genetic analysis of Aequipecten opercularis and Mimachlamys varia (Bivalvia: Pectinidae) in several Atlantic and Mediterranean localities, revealed by mitochondrial PCR-RFLPs: a preliminary study. Aquac. Res. 39, 474–481. [CrossRef] [Google Scholar]
  • Fernández-Tajes J., Méndez J., 2007, Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region. J. Agric. Food Chem. 55, 7278–7282. [CrossRef] [PubMed] [Google Scholar]
  • Gaffney P.M., 1994, Heterosis and heterozygote deficiencies in marine bivalves: more light? In: Beaumont A. R. (Ed.) Genetics and evolution of aquatic organisms. London, Chapman & Hall, pp. 146–153. [Google Scholar]
  • Goudet J., 2001, FSTAT, a program to estimate and test gene diversities and fixation indices. Institut d’Ecologie, Université de Lausanne, Dorigny, Switzerland.http://www2.unil.ch/popgen/softwares/fstat.htm. [Google Scholar]
  • Hall T.A., 1999, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98. [Google Scholar]
  • Jensen J.L., Bohonak A.J., Kelley S.T., 2005, Isolation by distance, web service. BMC Genet. 6, 13. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Jørgensen H.B.H., Hansen M.M., Bekkevold D., Ruzzante D.E., Loeschcke V., 2005, Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol. Ecol. 14, 3219–3234. [CrossRef] [PubMed] [Google Scholar]
  • Kenchington E.L., Patwary M.U., Zouros E., Bird C.J., 2006, Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol. Ecol. 15, 1781–1796. [CrossRef] [PubMed] [Google Scholar]
  • Launey S., Ledu C., Boudry P., Bonhomme F., Naciri-Graven Y., 2002, Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J. Hered. 93, 331–351. [CrossRef] [PubMed] [Google Scholar]
  • Lewis R.I., Thorpe J.P., 1994, Temporal stability of gene frequencies within genetically heterogeneous populations of the queen scallop Aequipecten (Chlamys) opercularis. Mar. Biol. 121, 117–126. [CrossRef] [Google Scholar]
  • Li G., Hubert S., Bucklin K., Ribes V., Hedgecock D., 2003, Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Mol. Ecol. Notes 3, 228–232. [CrossRef] [Google Scholar]
  • Li Y.C., Korol A.B., Fahima T., Beiles A., Nevo E., 2002, Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453–2465. [CrossRef] [PubMed] [Google Scholar]
  • Louis E.J., Dempster E.R., 1987, An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43, 805–811. [CrossRef] [PubMed] [Google Scholar]
  • Ma H., Yu Z., 2009, Development of twenty-two polymorphic microsatellite loci in the noble scallop, Chlamys nobilis. Conserv. Genet. 10, 1587–1590. [CrossRef] [Google Scholar]
  • Macleod J.A.A., Thorpe J.P., Duggan N.A., 1985, A biochemical genetic study of population structure in queen scallop (Chlamys opercularis) stocks in the Northern Irish Sea. Mar. Biol. 87, 77–82. [CrossRef] [Google Scholar]
  • Mathers N.F., 1975, Environmental variability at the phosphoglucose isomerase locus in the genus Chlamys. Biochem. Syst. Ecol. 3, 123–127. [CrossRef] [Google Scholar]
  • Meglecz E., 2007, MICROFAMILY (version 1): a computer program for detecting flanking-region similarities among different microsatellite loci. Mol. Ecol. Notes 7, 18–20. [CrossRef] [Google Scholar]
  • Nei M., 1978, Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. [PubMed] [Google Scholar]
  • Nève G., Meglécz E., 2000, Microsatellite frequencies in different taxa. Trends Ecol. Evol. 15, 376–377. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Quesada H., Zapata C., Alvarez G., 1995, A multilocus allozyme discontinuity in the mussel Mytilus galloprovincialis: the interaction of ecological and life-history factors. Mar. Ecol. Prog. Ser. 116, 99–115. [CrossRef] [Google Scholar]
  • Raymond M., Rousset F., 1995, Genepop (Version-1.2): population-genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249. [Google Scholar]
  • Reece K.S., Ribeiro W.L., Gaffney P.M., Carnegie R.B., Allen S.K., Jr, 2004, Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios. J. Hered. 95, 346–352. [CrossRef] [PubMed] [Google Scholar]
  • Rice W.R., 1989, Analyzing tables of statistical tests. Evolution 43, 223–225. [CrossRef] [PubMed] [Google Scholar]
  • Ríos C., Sanz S., Saavedra C., Pena J.B., 2002, Allozyme variation in populations of scallops, Pecten jacobaeus (L.) and P. maximus (L.) (Bivalvia: Pectinidae), across the Almeria-Oran front. J. Exp. Mar. Biol. Ecol. 267, 223–244. [CrossRef] [Google Scholar]
  • Rychlik W., Rhoads R.E., 1989, A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551. [CrossRef] [PubMed] [Google Scholar]
  • Vadopalas B., Leclair L.L., Bentzen P., 2004, Microsatellite and allozyme analyses reveal few genetic differences among spatially distinct aggregations of geoduck clams Panopea abrupta (Conrad, 1849). J. Shellfish Res. 23, 693–706. [Google Scholar]
  • Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P., 2004, MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. [CrossRef] [Google Scholar]
  • Wagner H.P., 1991, Review of the European Pectinidae. Vita Marina 41, 1–48. [Google Scholar]
  • Was A., Gosling E., McCrann K., Mork J., 2008, Evidence for population structuring of blue whiting (Micromesistius poutassou) in the Northeast Atlantic. ICES J. Mar. Sci. 65, 216–225. [CrossRef] [Google Scholar]
  • Watts P.C., Mallanaphy W.J., McCarthy C., Beukers-Stewart B.D., Mosley M.W.J., Brand A.R., Saccheri I.J., 2005, Polymorphic microsatellite loci isolated from the great scallop, Pecten maximus (Bivalvia: Pectinidae). Mol. Ecol. Notes 5, 902–904. [CrossRef] [Google Scholar]
  • Weir B.S., Cockerham C.C., 1984, Estimating F-statistics for the analysis of population-structure. Evolution 38, 1358–1370. [CrossRef] [PubMed] [Google Scholar]
  • Zane L., Bargelloni L., Patarnello T., 2002, Strategies for microsatellite isolation: a review. Mol. Ecol. 11, 1–16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Zhan A., Bao Z., Hu X., Hui M., Wang M., Peng W., Zhao H., Hu J., 2007, Isolation and characterization of 150 novel microsatellite markers for Zhikong scallop (Chlamys farreri). Mol. Ecol. Notes 7, 1015–1022. [CrossRef] [Google Scholar]
  • Zhan A., Hu J., Hu X., Hui M., Wang M., Peng W., Huang X., Wang S., Lu W., Sun C., Bao Z., 2009, Construction of microsatellite-based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim. Genet. 40, 821–831. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.