Open Access
Issue
Aquat. Living Resour.
Volume 38, 2025
Article Number 2
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2024018
Published online 20 January 2025
  • Abwao J, Jung'a J, Barasa JE, Kyule D, Opiyo M, Awuor JF, Ogello E, Munguti JM, Keya GA. 2023. Selective breeding of Nile tilapia, Oreochromis niloticus: a strategy for increased genetic diversity and sustainable development of aquaculture in Kenya. J Appl Aquacult 35: 237–256. [CrossRef] [Google Scholar]
  • Adeleke B, Robertson-Andersson D, Moodley G, Taylor S. 2021. Aquaculture in Africa: A comparative review of Egypt, Nigeria, and Uganda Vis-À-Vis South Africa. Rev Fish Sci Aquacult 29: 167–197. [CrossRef] [Google Scholar]
  • Adugna BT, Goshu G. 2010. Integrating aquaculture with traditional farming system: Socioeconomic assessment in the Amhara Region, Ethiopia. Ecohydrol Hydrobiol 10: 223–230. [CrossRef] [Google Scholar]
  • Anane-Taabeah G, Frimpong E, Hallerman E. 2019. Aquaculture-mediated invasion of the genetically improved farmed tilapia (Gift) into the lower Volta Basin of Ghana. Diversity 11: 188. [CrossRef] [Google Scholar]
  • Ansah YB, Frimpong EA, Hallerman EM. 2014. Genetically-improved tilapia strains in Africa: potential benefits and negative impacts. Sustainability 6: 3697–3721. [CrossRef] [Google Scholar]
  • Barría A, Peñaloza C, Papadopoulou A, Mahmuddin M, Doeschl‐Wilson A, Benzie JAH, Houston RD, Wiener P. 2023. Genetic differentiation following recent domestication events: a study of farmed Nile tilapia (Oreochromis niloticus) populations. Evol Appl 16: 1220–1235. [CrossRef] [PubMed] [Google Scholar]
  • Brummett RE. 2007. Freshwater fish seed supply: Africa regional synthesis. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture (pp. 41–58). FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p. [Google Scholar]
  • Brummett RE, Angoni DE, Pouomogne V. 2004. On-farm and on-station comparison of wild and domesticated Cameroonian populations of Oreochromis niloticus. Aquaculture 242: 157–164. [CrossRef] [Google Scholar]
  • Brummett RE, Lazard J, Moehl J. 2008. African aquaculture: realizing the potential. Food Policy 33: 371–385. [CrossRef] [Google Scholar]
  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population genomics. Mol Ecol 22: 3124–3140. [CrossRef] [PubMed] [Google Scholar]
  • Conte MA, Gammerdinger WJ, Bartie KL, Penman DJ, Kocher TD. 2017. A high quality assembly of the Nile tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18: 341. [CrossRef] [PubMed] [Google Scholar]
  • D'Ambrosio J, Phocas F, Haffray P, Bestin A, Brard-Fudulea S, Poncet C, Quillet E, Dechamp N, Fraslin C, Charles M, Dupont-Nivet M. 2019. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genet Sel Evol 51: 26. [CrossRef] [PubMed] [Google Scholar]
  • Delomas TA, Gomelsky B, Vu N, Campbell MR, Novelo ND. 2019. Single-nucleotide polymorphism discovery and genetic variation in YY-male and mixed-sex strains of Nile tilapia available in the United States. North Am J Aquacult 81: 183–188. [CrossRef] [Google Scholar]
  • Di Santo LN, Hoban S, Parchman TL, Wright JW, Hamilton JA. 2022. Reduced representation sequencing to understand the evolutionary history of Torrey pine (Pinus torreyana parry) with implications for rare species conservation. Mol Ecol 31: 4622–4639. [CrossRef] [PubMed] [Google Scholar]
  • Diyie RL, Agyarkwa SK, Armah E, Amonoo NA, Owusu-Frimpong I, Osei-Atweneboana MY. 2021. Genetic variations among different generations and cultured populations of Nile Tilapia (Oreochromis niloticus) in Ghana: application of microsatellite markers. Aquaculture 544: 737070. [CrossRef] [Google Scholar]
  • Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359–361. [CrossRef] [Google Scholar]
  • El-Sayed A-FM, Fitzsimmons K. 2023. From Africa to the world—The journey of Nile tilapia. Rev Aquacult 15: 6–21. [CrossRef] [Google Scholar]
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14: 2611–2620. [CrossRef] [PubMed] [Google Scholar]
  • Fagbémi MNA, Pigneur L, André A, Smitz N, Gennotte V, Michaux JR, Mélard C, Lalèyè PA, Rougeot C. 2021. Genetic structure of wild and farmed Nile tilapia (Oreochromis niloticus) populations in Benin based on genome wide SNP technology. Aquaculture 535: 736432. [CrossRef] [Google Scholar]
  • FAO. 2024. Fishery and Aquaculture Statistics − Yearbook 2021. FAO Yearbook of Fishery and Aquaculture Statistics. Rome. https://doi.org/10.4060/cc9523en [Google Scholar]
  • FAO. 2023. Fishery and Aquaculture Statistics. Global aquaculture production 1950–2021 (FishStatJ). In: FAO Fisheries and Aquaculture Division [online]. Rome. Updated 2023. www.fao.org/fishery/en/statistics/software/fishstatj [Google Scholar]
  • Frost LA, Evans BS, Jerry DR. 2006. Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261: 1056–1064. [CrossRef] [Google Scholar]
  • Geletu TT, Zhao J. 2023. Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture. Hydrobiologia 850: 2425–2445. [CrossRef] [Google Scholar]
  • Guo X-Z, Chen H-M, Wang A-B, Qian X-Q. 2022. Population genetic structure of the yellow catfish (Pelteobagrus fulvidraco) in China inferred from microsatellite analyses: implications for fisheries management and breeding. J World Aquacult Soc 53: 174–191. [CrossRef] [Google Scholar]
  • Hamilton MG, Lind CE, Barman BK, Velasco RR, Danting MJ, Benzie JA. 2020. Distinguishing between Nile tilapia strains using a low-density single-nucleotide polymorphism panel. Front Genet 11: 594722. [CrossRef] [PubMed] [Google Scholar]
  • Hinrichsen E, Walakira JK, Langi S, Ibrahim NA, Tarus V, Badmus O, Baumüller H. 2022. Prospects for aquaculture development in Africa: A review of past performance to assess future potential, ZEF Working Paper Series, No. 211, University of Bonn, Center for Development Research (ZEF), Bonn. https://nbn-resolving.de/urn:nbn:de:101:1-2022021001555935838790 [Google Scholar]
  • Hosoya S, Kikuchi K, Nagashima, H, Onodera J, Sugimoto K, Satoh K, Matsuzaki K, Yasugi M, Nagano AJ, Kumagayi A, Ueda K, Kurokawa T. 2018. Assessment of genetic diversity in Coho salmon (Oncorhynchus kisutch) populations with no family records using ddRAD-seq. BMC Res Notes 11: 548. [CrossRef] [PubMed] [Google Scholar]
  • Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405. [CrossRef] [PubMed] [Google Scholar]
  • Kajungiro RA, Palaiokostas C, Pinto FAL, Mmochi AJ, Mtolera M, Houston RD, De Koning DJ. 2019. Population structure and genetic diversity of Nile tilapia (Oreochromis niloticus) strains cultured in Tanzania. Front Genet 10: 1269. [CrossRef] [PubMed] [Google Scholar]
  • Kardos M, Luikart G, Allendorf F. 2015. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115: 63–72. [CrossRef] [PubMed] [Google Scholar]
  • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. [CrossRef] [PubMed] [Google Scholar]
  • Li C. 2022. Conservation of genetic resources for sustainable aquaculture. J World Aquacult Soc 53: 4–7. [Google Scholar]
  • Longo A, Kurta K, Vanhala T, Jeuthe H, de Koning D-J, Palaiokostas C. 2024. Genetic diversity patterns in farmed rainbow trout (Oncorhynchus mykiss) populations using genome-wide SNP and haplotype data. Anim Genet 55: 87–98. [CrossRef] [PubMed] [Google Scholar]
  • McKinna EM, Nandlal S, Mather PB, Hurwood DA. 2010. An investigation of the possible causes for the loss of productivity in genetically improved farmed tilapia strain in Fiji: inbreeding versus wild stock introgression. Aquacult Res 41: e730–e742. [CrossRef] [Google Scholar]
  • Migaud H, Bell G, Cabrita E, McAndrew B, Davie A, Bobe J, Herráez MP, Carrillo M. 2013. Gamete quality and broodstock management in temperate fish. Rev Aquacult 5: S194–S223. [CrossRef] [Google Scholar]
  • Mireku KK, Kassam D, Changadeya W, Attipoe FYK, Adinortey CA. 2017. Assessment of genetic variations of Nile Tilapia (Oreochromis niloticus L.) in the Volta Lake of Ghana using microsatellite markers. Afr J Biotechnol 16: 312–321. [CrossRef] [Google Scholar]
  • Moses M, Mtolera MSP, Chauka LJ, Lopes FA, De Koning DJ, Houston RD, Palaiokostas C. 2020. Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing. Aquacult Int 28: 477–492. [CrossRef] [Google Scholar]
  • Natea G. 2018. Aquaculture potential, status, constraints and future prospects in Ethiopia: a review. Int J Adv Res 7: 336–343. [Google Scholar]
  • Nayfa MG, Jones DB, Benzie J, Jerry DR, Zenger KR. 2020. Comparing genomic signatures of selection between the Abbassa strain and eight wild populations of Nile tilapia (Oreochromis niloticus) in Egypt. Front Genet 11: 567969. [CrossRef] [PubMed] [Google Scholar]
  • Nazareno AG, Bemmels JB, Dick CW, Lohmann L. 2017. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17: 1136–1147. [CrossRef] [PubMed] [Google Scholar]
  • Pembleton LW, Cogan NOI, Forster JW. 2013. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour 13: 946–952. [CrossRef] [PubMed] [Google Scholar]
  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7: e37135. [CrossRef] [PubMed] [Google Scholar]
  • Robledo D, Ogwang J, Byakora E, Nascimento-Schulze JC, Benda KK, Fraslin C, Salisbury S, Solimo M, Mayega JF, Peter B, Masembe C, Houston R, Mukiibi R. 2024. Genetic diversity and population structure of farmed and wild Nile tilapia (Oreochromis niloticus) in Uganda: the potential for aquaculture selection and breeding programs. Genomics 116: 110781. [CrossRef] [PubMed] [Google Scholar]
  • Rochette N, Catchen J. 2017. Deriving genotypes from RAD-seq short-read data using Stacks. Nat Protoc 12: 2640–2659. [CrossRef] [PubMed] [Google Scholar]
  • Rochette NC, Rivera-Colón AG, Catchen J. 2019. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28: 4737–4754. [CrossRef] [PubMed] [Google Scholar]
  • Romana-Eguia MRR, Ikeda M, Basiao ZU, Taniguchi N. 2005. Genetic changes during mass selection for growth in Nile tilapia, Oreochromis niloticus (L.), assessed by microsatellites. Aquacult Res 36: 69–78. [CrossRef] [Google Scholar]
  • Shechonge A, Ngatunga BP, Tamatamah R, Bradbeer SJ, Harrington J, Ford AGP, Turner GF, Genner MJ. 2018. Losing cichlid fish biodiversity: genetic and morphological homogenization of tilapia following colonization by introduced species. Conserv Genet 19: 1199–1209. [CrossRef] [PubMed] [Google Scholar]
  • Shikuku M, Tran N, Joffre OM, Islam AHMS, Barman BK, Ali S, Rossignoli CM. 2021. Lock-ins to the dissemination of genetically improved fish seeds. Agric Syst 188: 103042. [CrossRef] [Google Scholar]
  • Sunde J, Yıldırım Y, Tibblin P, Forsman A. 2020. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front Genet 11: 218. [CrossRef] [PubMed] [Google Scholar]
  • Syaifudin M, Bekaert M, Taggart JB, Bartie KL, Wehner S, Palaiokostas C, Khan MGQ, Selly S-LC, Hulata G, D'Cotta H, Baroiller J-F, McAndrew BJ, Penman DJ. 2019. Species-specific marker discovery in tilapia. Sci Rep 9: 13001. [CrossRef] [PubMed] [Google Scholar]
  • Taniguchi N. 2003. Genetic factors in broodstock management for seed production. Rev Fish Biol Fish 13: 177–185. [CrossRef] [Google Scholar]
  • Tesfaye G, Curto M, Meulenbroek P, Englmaier GK, Tibihika PD, Alemayehu E, Getahun A, Meimberg H. 2021. Genetic diversity of Nile tilapia (Oreochromis niloticus) populations in Ethiopia: insights from nuclear DNA microsatellites and implications for conservation. BMC Ecol Evol 21: 113. [CrossRef] [PubMed] [Google Scholar]
  • Tesfaye G, Wolff M. 2014. The state of inland fisheries in Ethiopia: a synopsis with updated estimates of potential yield. Ecohydrol Hydrobiol 14: 200–219. [CrossRef] [Google Scholar]
  • Trewavas E. 1983. Tilapiine fishes of the genera Sarotherodon, Oreochromis, and Danakilia. Publication No. 898. British Museum of Natural History, London, UK. [Google Scholar]
  • Trinh TQ, Agyakwah SK, Khaw HL, Benzie JAH, Attipoe FKY. 2021. Performance evaluation of Nile tilapia (Oreochromis niloticus) improved strains in Ghana. Aquaculture 530: 735938. [CrossRef] [Google Scholar]
  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E. 2009. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19: 327–335. [CrossRef] [PubMed] [Google Scholar]
  • Villanueva B, Fernández A, Peiró-Pastor R, Peñaloza C, Houston RD, Sonesson AK, Tsigenopoulos CS, Bargelloni L, Gamsız K, Karahan B, Gökçek EÖ, Fernández J, Saura M. 2022. Population structure and genetic variability in wild and farmed Mediterranean populations of gilthead seabream and European seabass inferred from a 60K combined species SNP array. Aquacult Rep 24: 101145. [Google Scholar]
  • Wakjira M, Tolemariam T, Kim TJ, Kim KR. 2013. Aquaculture development in Ethiopia: review on potential and strategy. J Agric Life Environ Sci 25: 20–25. [Google Scholar]
  • Workagegn KB, Gjøen HM. 2012. Comparison studies on growth performance of four juvenile O. niloticus strains in pond culture, Ethiopia. Int J Aquacult 2: 40–47. [Google Scholar]
  • Workagegn KB, Natarajan P, Gedebo A. 2020. Genetic parameters and genotype by environment interaction of the Nile tilapia (Oreochromis niloticus) reared in two test environments. Aquacult Int 28: 2263–2273. [CrossRef] [Google Scholar]
  • Yalew A, Dejen E, Spliethoff P. 2015. Investment opportunities in the Ethiopian aquaculture sub-sector. https://www.rvo.nl/sites/default/files/2015/11/Rapport%20Aquaculture%20Ethiopia.pdf [Google Scholar]
  • Yáñez JM, Joshi R, Yoshida GM. 2020. Genomics to accelerate genetic improvement in tilapia. Anim Genet 51: 658–674. [CrossRef] [PubMed] [Google Scholar]
  • Yoshida GM, Barria A, Correa K, Cáceres G, Jedlicki A, Cadiz MI, Lhorente JP, Yáñez JM. 2019. Genome-wide patterns of population structure and linkage disequilibrium in farmed Nile tilapia (Oreochromis niloticus). Front Genet 10: 745. [CrossRef] [PubMed] [Google Scholar]
  • Zhu W, Fu J, Luo M, Wang L, Wang P, Liu Q, Dong Z. 2022. Genetic diversity and population structure of bighead carp (Hypophthalmichthys nobilis) from the middle and lower reaches of the Yangtze River revealed using microsatellite markers. Aquacult Rep 27: 101377. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.