Open Access
Issue
Aquat. Living Resour.
Volume 36, 2023
Article Number 19
Number of page(s) 11
DOI https://doi.org/10.1051/alr/2023013
Published online 07 July 2023
  • Barroso FG, de Haro C, Sánchez-Muros M-J, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. 2014. The potential of various insect species for use as food for fish. Aquaculture 422: 193–201. [CrossRef] [Google Scholar]
  • Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, De Marco M, Dabbou S, Schiavone A, Zoccarato I. 2015. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci 14, 4170. [CrossRef] [Google Scholar]
  • Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbø, R., Krogdahl Å, Lock E-J. 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 503: 609–619. [CrossRef] [Google Scholar]
  • Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N, Li Y, Krogdahl Å, Lock EJ. 2018. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture 491: 72–81. [CrossRef] [Google Scholar]
  • Bolann B, Ulvik R. 1991. Improvement of a direct spectrophotometric assay for routine determination of superoxide dismutase activity. Clin Chem 37: 1993–1999. [CrossRef] [PubMed] [Google Scholar]
  • Burtis CA, Bruns DE. 2014. Tietz fundamentals of clinical chemistry and molecular diagnostics-e-book. Elsevier Health Sciences. [Google Scholar]
  • Cai Y, Huang H, Yao W, Yang H, Xue M, Li X, Leng X. 2022. Effects of fish meal replacement by three protein sources on physical pellet quality and growth performance of Pacific white shrimp (Litopenaeus vannamei). Aquac Rep 25: 101210. [CrossRef] [Google Scholar]
  • Chaklader MR, Siddik MA, Fotedar R, Howieson J. 2019. Insect larvae, Hermetia illucens in poultry by-product meal for barramundi, Lates calcarifer modulates histomorphology, immunity and resistance to Vibrio harveyi. Sci Rep 9: 1–15. [Google Scholar]
  • Chen B, Li E, Liu Q, Liu Y, Zhang J. 2019. Comparative transcriptome analysis of Litopenaeus vannamei hepatopancreas in response to low salinity stress. Genomics 111: 81–90. [Google Scholar]
  • de Carvalho NM, Madureira AR, Pintado ME. 2020. The potential of insects as food sources − a review. Crit Rev Food Sci Nutr 60: 3642–3652. [CrossRef] [PubMed] [Google Scholar]
  • DiGiacomo K, Leury B. 2019. Insect meal: a future source of protein feed for pigs? Animal 13: 3022–3030. [CrossRef] [PubMed] [Google Scholar]
  • Dumas A, Raggi T, Barkhouse J, Lewis E, Weltzien E. 2018. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 492: 24–34. [CrossRef] [Google Scholar]
  • Ellis AI. 1990. Lysozyme assays. Tech Fish Immunol 1: 101–103. [Google Scholar]
  • FAO. 2018. The State of World Fisheries and Aquaculture. Meeting the sustainable development goals. Food & Agriculture Org. [Google Scholar]
  • FAO. 2019. Cultured Aquatic Species Information Programme: Litopenaeus vannamei. Food and Agriculture Organization of the United Nations. http://www.fao.org/fishery/culturedspecies/Litopenaeus_vannamei/en/ [Google Scholar]
  • Fawole FJ, Adeoye AA, Tiamiyu LO, Ajala KI, Obadara SO, Ganiyu IO. 2020. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 518: 734849. [CrossRef] [Google Scholar]
  • Feng P, He J, Lv M, Huang G, Chen X, Yang Q, Wang J, Wang D, Ma H. 2019. Effect of dietary Tenebrio molitor protein on growth performance and immunological parameters in Macrobrachium rosenbergii. Aquaculture 511: 734247. [CrossRef] [Google Scholar]
  • Ferrer Llagostera P, Kallas Z, Reig L, Amores de Gea D. 2019. The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers' perceptions and willingness to pay. J Clean Prod 229: 10–21. [Google Scholar]
  • Foysal MJ, Fotedar R, Tay C-Y., Gupta SK. 2019. Dietary supplementation of black soldier fly (Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron (Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 7: e 6891. [Google Scholar]
  • Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Biochem 64: 97–112. [CrossRef] [PubMed] [Google Scholar]
  • Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, Lussiana C, Antonopoulou E, Mola P, Chatzifotis S. 2016. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol 220: 34–45. [CrossRef] [Google Scholar]
  • Ghamkhar R, Hicks A. 2020. Comparative environmental impact assessment of aquafeed production: sustainability implications of forage fish meal and oil free diets. Resour Conserv Recycl 161: 104849. [CrossRef] [Google Scholar]
  • Globe Newswire. 2020. Global $1.39Bn Insect Feed Market, 2024: Insights into Growth Trends & Opportunities. 9 March 2020. Globe Newswire. [Google Scholar]
  • Gu J, Liang H, Ge X, Xia D, Pan L, Mi H, Ren M. 2022. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish Shellfish Immunol 120: 214–221. [CrossRef] [PubMed] [Google Scholar]
  • Hardy RW. 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41: 770–776. [CrossRef] [Google Scholar]
  • Henry M, Gasco L, Piccolo G, Fountoulaki E. 2015. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Sci Technol 203: 1–22. [CrossRef] [Google Scholar]
  • Henry MA, Gai F, Enes P, Peréz-Jiménez A, Gasco L. 2018a. Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 83: 308–313. [CrossRef] [PubMed] [Google Scholar]
  • Henry MA, Gasco L, Chatzifotis S, Piccolo G. 2018b. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev Compar Immunol 81: 204–209. [Google Scholar]
  • Iaconisi V, Marono S, Parisi G, Gasco L, Genovese L, Maricchiolo G, Bovera F, Piccolo G. 2017. Dietary inclusion of Tenebrio molitor larvae meal: effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture 476: 49–58. [CrossRef] [Google Scholar]
  • Iwasaki A, Medzhitov R. 2010. Regulation of adaptive immunity by the innate immune system. Science 327: 291–295. [CrossRef] [PubMed] [Google Scholar]
  • Jannathulla R, Rajaram V, Kalanjiam R, Ambasankar K, Muralidhar M, Dayal JS. 2019. Fishmeal availability in the scenarios of climate change: inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac Res 50: 3493–3506. [CrossRef] [Google Scholar]
  • Jones CM, Ng WK, King M. 2010. Alsever's solution: a review of its history, chemistry, and production. Transfus Med Rev 24: 259–267. [CrossRef] [PubMed] [Google Scholar]
  • Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M. 2010. Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture 308: 136–144. [Google Scholar]
  • Khanjani MH, Mozanzadeh MT, Sharifinia M, Emerenciano MGC. 2022a. Biofloc: a sustainable dietary supplement, nutritional value and functional properties. Aquaculture 738757. [Google Scholar]
  • Khanjani MH, Sharifinia M. 2020. Biofloc technology as a promising tool to improve aquaculture production. Rev Aquacult 12: 1836–1850. [Google Scholar]
  • Khanjani MH, Sharifinia M. 2022. Biofloc technology with addition molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquac Int 30: 383–397. [CrossRef] [Google Scholar]
  • Khanjani MH, Sharifinia M, Hajirezaee S. 2022b. Recent progress towards the application of biofloc technology for tilapia farming. Aquaculture 738021. [CrossRef] [Google Scholar]
  • Khosravi S, Kim E, Lee YS, Lee SM. 2018. Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for juvenile rockfish (Sebastes schlegeli). Entomolog Res 48: 214–221. [CrossRef] [Google Scholar]
  • Lin YH, Mui JJ. 2017. Evaluation of dietary inclusion of housefly maggot (Musca domestica) meal on growth, fillet composition and physiological responses for barramundi, Lates calcarifer. Aquac Res 48: 2478–2485. [Google Scholar]
  • Liu X, Tan B, Huang X, Li X, Qin JG. 2018. The immune system and bacterial disease resistance in shrimp: a review. Aquac Res 49: 1750–1760. [Google Scholar]
  • Makkar HP, Tran G, Heuzé V, Ankers P. 2014. State-of-the-art on use of insects as animal feed. Animal Feed Sci Technol 197: 1–33. [CrossRef] [Google Scholar]
  • Mastoraki M, Mollá Ferrándiz P, Vardali SC, Kontodimas DC, Kotzamanis YP, Gasco L, Chatzifotis S,Antonopoulou E. 2020a. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture 528: 735511. [CrossRef] [Google Scholar]
  • Mastoraki M, Vlahos N, Patsea E, Chatzifotis S, Mente E, Antonopoulou E. 2020b. The effect of insect meal as a feed ingredient on survival, growth, and metabolic and antioxidant response of juvenile prawn Palaemon adspersus (Rathke, 1837). Aquac Res 51: 3551–3562. [CrossRef] [Google Scholar]
  • Mente E, Bousdras T, Feidantsis K, Panteli N, Mastoraki M, Kormas KA, Chatzifotis S, Piccolo G, Gasco L, Gai F, Martin SAM, Antonopoulou E. 2022. Tenebrio molitor larvae meal inclusion affects hepatic proteome and apoptosis and/or autophagy of three farmed fish species. Sci Rep 12: 121. [Google Scholar]
  • Motte C, Rios A, Lefebvre T, Do H, Henry M, Jintasataporn O. 2019. Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals 9: 258. [CrossRef] [Google Scholar]
  • Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G. 2021. Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 341: 1–20. [CrossRef] [PubMed] [Google Scholar]
  • Ng WK, Liew FL, Ang LP, Wong KW. 2001. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac Res 32: 273–280. [Google Scholar]
  • Olsen RL, Hasan MR. 2012. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci Technol 27: 120–128. [Google Scholar]
  • Panini RL, Freitas LEL, Guimarães AM, Rios C, da Silva MFO, Vieira FN, Fracalossi DM, Samuels RI, Prudêncio ES, Silva CP. 2017. Potential use of mealworms as an alternative protein source for Pacific white shrimp: digestibility and performance. Aquaculture 473: 115–120. [CrossRef] [Google Scholar]
  • Perazzolo LM, Barracco MA. 1997. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev Comparat Immunol 21: 385–395. [CrossRef] [Google Scholar]
  • Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G. 2017. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Sci Technol 226: 12–20. [CrossRef] [Google Scholar]
  • Pinoni S, Mañanes AL. 2004. Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Biol Ecol 307: 35–46. [CrossRef] [Google Scholar]
  • Quang Tran H, Van Doan H, Stejskal V. 2022. Environmental consequences of using insect meal as an ingredient in aquafeeds: a systematic view. Rev Aquac 14: 237–251.. [CrossRef] [Google Scholar]
  • Rauta PR, Nayak B, Das S. 2012. Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol Lett 148: 23–33. [CrossRef] [PubMed] [Google Scholar]
  • Research M. 2018. Edible insects market by type (edible crickets, mealworms, black soldier fly, grasshopper), product (whole insects, insect flour, cricket protein bars, insect snacks, insect in chocolate)-global opportunity analysis and industry forecast (2018–2023). Report ID MRFB- 10448. [Google Scholar]
  • Roque A, Yildiz HY, Carazo I, Duncan N. 2010. Physiological stress responses of sea bass (Dicentrarchus labrax) to hydrogen peroxide (H2O2) exposure. Aquaculture 304: 104–107. [CrossRef] [Google Scholar]
  • Sánchez‐Muros MJ, Renteria P, Vizcaino A, Barroso FG. 2020. Innovative protein sources in shrimp (Litopenaeus vannamei) feeding. Rev Aquac 12: 186–203. [CrossRef] [Google Scholar]
  • Sankian Z, Khosravi S, Kim Y-O, Lee S-M. 2018. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture 496: 79–87. [CrossRef] [Google Scholar]
  • Saurabh S, Sahoo P. 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39: 223–239. [CrossRef] [Google Scholar]
  • Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St‐Hilaire S. 2011. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J World Aquac Soc 42: 34–45. [Google Scholar]
  • Sharifinia M. 2015. Macroinvertebrates of the Iranian running waters: a review. Acta Limnolog Bras 27: 356–369. [CrossRef] [Google Scholar]
  • Shi B, Xu F, Zhou Q, Regan MK, Betancor MB, Tocher DR, Sun M, Meng F, Jiao L, Jin M. 2021. Dietary organic zinc promotes growth, immune response and antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp (Litopenaeus vannamei). Aquac Rep 19: 100638. [CrossRef] [Google Scholar]
  • Šimůnek J, Bartoňová H. 2005. Effect of dietary chitin and chitosan on cholesterolemia of rats. Acta Veterinaria Brno 74: 491–499. [CrossRef] [Google Scholar]
  • Song SG, Chi SY, Tan BP, Liang GL, Lu BQ, Dong XH, Yang QH, Liu HY, Zhang S. 2018. Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀). Aquac Res 49: 2210–2217. [CrossRef] [Google Scholar]
  • Su J, Gong Y, Cao S, Lu F, Han D, Liu H, Jin J, Yang Y, Zhu X, Xie S. 2017. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol 69: 59–66. [CrossRef] [PubMed] [Google Scholar]
  • Tacon AG, Metian M. 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafe eds trends and future prospects. Aquaculture 285: 146–158. [CrossRef] [Google Scholar]
  • Tharanathan RN, Kittur FS. 2003. Chitin-the undisputed biomolecule of great potential. [Google Scholar]
  • Tubin JSB, Paiano D, Hashimoto GSdO, Furtado WE, Martins ML, Durigon E, Emerenciano MGC. 2020. Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture 519: 734763. [CrossRef] [Google Scholar]
  • van Huis A. 2022. Edible insects: challenges and prospects. Entomolog Res 52: 161–177. [CrossRef] [Google Scholar]
  • van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. 2013. Edible insects: future prospects for food and feed security. Food and agriculture organization of the United Nations. [Google Scholar]
  • Wang T, Wang X, Shehata AI, Wang R, Yang H, Wang Y, Wang J, Zhang Z. 2022. Growth performance, physiological and antioxidant capacity responses to dietary fish meal replacement with insect meals for aquaculture: a case study in red claw crayfish (Cherax quadricarinatus). Aquac Res 53: 3853–3864. [CrossRef] [Google Scholar]
  • Wu C, Shan J, Feng J, Wang J, Qin C, Nie G, Ding C. 2019. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. Fish Shellfish Immunol 89: 641–646. [CrossRef] [PubMed] [Google Scholar]
  • Xiao X, Jin P, Zheng L, Cai M, Yu Z, Yu J, Zhang J. 2018. Effects of black soldier fly (Hermetia illucens) larvae meal protein as a fishmeal replacement on the growth and immune index of yellow catfish (Pelteobagrus fulvidraco). Aquac Res 49: 1569–1577. [CrossRef] [Google Scholar]
  • Yeganeh V, Sharifinia M, Mobaraki S, Dashtiannasab A, Aeinjamshid K, Borazjani JM, Maghsoudloo T. 2020. Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae 97: 101856. [CrossRef] [PubMed] [Google Scholar]
  • Yildirim U, Sarica S, Kanoglu B. 2020. Defatted yellow mealworm larvae (Tenebrio molitor) meal as possible alternative to fish meal in quail diets. South Afr J Animal Sci 50: 481–491. [CrossRef] [Google Scholar]
  • Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. 2013. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Dev Compar Immunol 39: 39–62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.