Open Access
Issue
Aquat. Living Resour.
Volume 36, 2023
Article Number 20
Number of page(s) 17
DOI https://doi.org/10.1051/alr/2023015
Published online 07 July 2023
  • Artetxe-Arrate I, Fraile I, Crook DA, Zudaire I, Arrizabalaga H, Greig A, Murua H. 2019. Otolith microchemistry: a useful tool for investigating stock structure of yellowfin tuna (Thunnus albacares) in the Indian Ocean. Mar Freshw Res 70: 1708–1721. [CrossRef] [Google Scholar]
  • Artetxe-Arrate I, Fraile I, Farley J, Darnaude AM, Clear N, Rodríguez-Ezpeleta N, Dettman DL, Pécheyran C, Krug I, Médieu A, Ahusan M, Proctor C, Priatna A, Lestari P, Davies C, Marsac F, Murua H. 2021. Otolith chemical fingerprints of skipjack tuna (Katsuwonus pelamis) in the Indian Ocean: First insights into stock structure delineation. PLOS ONE 16: 1–18. [Google Scholar]
  • Bae SE, Kim J-K. 2020. Otolith microchemistry reveals the migration patterns of the flathead grey mullet Mugil cephalus (Pisces: Mugilidae) in Korean waters. J Ecol Environ 44: 21. [CrossRef] [Google Scholar]
  • Brophy D, Rodríguez-Ezpeleta N, Fraile I, Arrizabalaga H. 2020. Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus). Sci Rep 10: 1–17. [CrossRef] [PubMed] [Google Scholar]
  • Cadrin SX, Kerr LA, Mariani S. 2013. Stock identification methods: applications in fishery science. Technology & Engineering. Academic Press. 566 pp. [Google Scholar]
  • Campana S. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188: 263–297. [CrossRef] [Google Scholar]
  • Chale-Matsau JR, Govender A, Beckley LE. 1999. Age and growth of the queen mackerel Scomberomorus plurilineatus from KwaZulu-Natal, South Africa. Fish Res 44: 121–127. [Google Scholar]
  • Charrad M, Ghazzali N, Boiteau V, Niknafs A. 2014. Determining the number of clusters using NbClust package. Proceedings of MSDM 2014. Available online at https://www.researchgate.net/profile/Mohamed-Limam/publication/323600098_Proceedings_of_MSDM_2014/links/5a9f7cd9aca272d448adb7cb/Proceedings-of-MSDM-2014.pdf#page=6. Accessed on 2023- 04-12. [Google Scholar]
  • Claereboudt MR, Mcllwain JL, Al-Oufi HS, Ambu-Ali AA. 2005. Patterns of reproduction and spawning of the kingfish (Scomberomorus commerson, Lacèpede) in the coastal waters of the Sultanate of Oman. Fish Res 73: 273–282. [CrossRef] [Google Scholar]
  • Clarke AD, Telmer KH, Shrimpton JM. 2015. Movement patterns of fish revealed by otolith microchemistry: a comparison of putative migratory and resident species. Environ Biol Fishes 98: 1583–1597. [CrossRef] [Google Scholar]
  • Collette BB. 2001. Scombridae, in: The Living Marine Resources of the Western Central Pacific, edited by K.E. Carpenter and V. Niem, pp. 3721–3756. [Google Scholar]
  • Collette BB, Russo JL. 1984. Morphology, systematics, and biology of the Spanish mackerels (Scomberomorus, Scombridae). Wash. DC Serv. 82: 545–692. [Google Scholar]
  • Devaraj M. 1983. Maturity, spawning and fecundity of the king seer, Scomberomorus commerson (Lacepède), in the seas around the Indian peninsula. Indian J Fish 30: 203–230. [Google Scholar]
  • Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD. 2008. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. In: Oceanography and Marine Biology, Volume 46. CRC Press. 34 pp. [Google Scholar]
  • Farias I, Pérez-Mayol S, Vieira S, Oliveira PB, Figueiredo I, Morales-Nin B. 2022. Ontogenetic spatial dynamics of the deep-sea teleost Aphanopus carbo in the NE Atlantic according to otolith geochemistry. Deep Sea Res Part Oceanogr Res Pap 186: 103820. [CrossRef] [Google Scholar]
  • Fauvelot C, Borsa P. 2011. Patterns of genetic isolation in a widely distributed pelagic fish, the narrow-barred Spanish mackerel (Scomberomorus commerson). Biol J Linn Soc 104: 886–902. [CrossRef] [Google Scholar]
  • Fersi W. 2016. Reconstitution de la variabilité de la mousson indienne et ses impacts environnementaux sur le Nord-Ouest de la Mer d'Arabie et ses bordures continentales depuis le Dernier Maximum GlaciaireW étude multi-proxy d'une carotte marine dans le Golfe d'Aden (These de doctorat). Université Paris-Saclay (ComUE). [Google Scholar]
  • Fu D. 2020. Assessment of Indian Ocean narrow-barred Spanish mackerel (Scomberomorus commerson) using data-limited methods | IOTC (No. IOTC-2020-WPNT10-14). Kenya, IOTC Working Party on Neritic Tunas (WPNT). [Google Scholar]
  • Gittings JA, Raitsos DE, Racault M-F., Brewin RJW, Pradhan Y, Sathyendranath S, Platt T. 2017. Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens Environ 189: 56–66. [CrossRef] [Google Scholar]
  • Govender A, Al-Oufi H, McIlwain JL, Claereboudt MC. 2006. A per-recruit assessment of the kingfish (Scomberomorus commerson) resource of Oman with an evaluation of the effectiveness of some management regulations. Fish Res 77: 239–247. [CrossRef] [Google Scholar]
  • Grandcourt EM. 2013. A review of the fisheries, biology, status and management of the narrow-barred Spanish mackerel (Scomberomorus commerson) in the Gulf Cooperation Council countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates) (No. IOTC-2013-WPNT03-27). Bali, Indonesia, IOTC Working Party on Neritic Tunas (WPNT). [Google Scholar]
  • Grandcourt EM, Al Abdessalaam TZ, Francis F, Al Shamsi AT. 2005. Preliminary assessment of the biology and fishery for the narrow-barred Spanish mackerel, Scomberomorus commerson (Lacépède, 1800), in the southern Arabian Gulf.Fish Res 76: 277–290. [CrossRef] [Google Scholar]
  • Hampton SL, Moloney CL, van der Lingen CD,Labonne M. 2018. Spatial and temporal variability in otolith elemental signatures of juvenile sardine off South Africa. J Mar Syst 188: 109–116. [CrossRef] [Google Scholar]
  • Hoolihan JP, Anandh P, van Herwerden L. 2006. Mitochondrial DNA analyses of narrow-barred Spanish mackerel (Scomberomorus commerson) suggest a single genetic stock in the ROPME sea area (Arabian Gulf, Gulf of Oman, and Arabian Sea). ICES J Mar Sci 1066–1074. [CrossRef] [Google Scholar]
  • Hüssy K, Limburg KE, de Pontual H, Thomas O.R, Cook PK, Heimbrand Y, Blass M, Sturrock AM. 2020. Trace element patterns in otoliths: the role of biomineralization. Rev Fish Sci Aquac 29: 445–477. [Google Scholar]
  • IOTC. 2014. Status of the Indian Ocean narrow-barred Spanish mackerel (Scomberomorus commerson) resource (No. IOTC-2014-SC17-ES11). Seychelles, Indian Ocean Tuna Commission Scientific Committee (SC). Available at https://iotc.org/sites/default/files/documents/2014/11/IOTC-2014-SC17-ES11E_-_Narrow-barred_Spanish_mackerel.pdf, Accessed on 2023- 04-12. [Google Scholar]
  • IOTC. 2017. Assessment of Indian Ocean narrow-barred Spanish mackerel (Scomberomorus commerson) using data limited catch-based methods (No. IOTC-2017-WPNT 07-17 Rev_1). IOTC Working Party on Neritic Tunas (WPNT). Avaiable at https://iotc.org/sites/default/files/documents/2017/07/IOTC-2017-WPNT07-17_Rev_1_-_SA_COM.pdf, Accessed on 2023- 04-12. [Google Scholar]
  • IOTC. 2018. Status of the Indian Ocean narrow-barred Spanish mackerel (Scomberomorus commerson) resource (No. IOTC-2018-SC21-ES11). Seychelles, Indian Ocean Tuna Commission Scientific Committee (SC). Available at https://iotc.org/sites/default/files/documents/2018/11/Narrow-barred_Spanish_mackerel_0.docx, Accessed on 2023- 04-12. [Google Scholar]
  • Izzo C, Reis-Santos P, Gillanders BM. 2018. Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish Fisheries 19: 441–454. [CrossRef] [Google Scholar]
  • Jaswal AK, Singh V, Bhambak SR. 2012. Relationship between sea surface temperature and surface air temperature over Arabian Sea, Bay of Bengal and Indian Ocean. J Ind Geophys Union 16: 41–53. [Google Scholar]
  • Kai TE, Marsac F. 2010. Influence of mesoscale eddies on spatial structuring of top predators' communities in the Mozambique Channel. Progr Oceanogr 86: 214–223. [CrossRef] [Google Scholar]
  • Kassambara A. 2017. Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra. Sthda. 169 pp. [Google Scholar]
  • Kassambara A, Mundt F. 2017. Package ‘factoextra.’ Extr. Vis. Results Multivar. Data Anal 76. [Google Scholar]
  • Kaymaram G, Vahabnezhad D. 2013. Growth, mortality and exploitation rate of narrow-barred Spanish mackerel, Scomberomorus commerson in the Persian Gulf and Oman Sea, Iran, Hormozgan's waters (No. IOTC-2013-WPNT 03-29 Rev_1). Bali, Indonesia, IOTC Working Party on Neritic Tunas (WPNT). Available at https://iotc.org/sites/default/files/documents/2013/06/IOTC-2013-WPNT03-29%20Rev_1%20-%20I.R.%20Iran%20Spanish%20mackerel_0.pdf, Accessed on 2023- 04-12. [Google Scholar]
  • Kerr LA, Campana SE. 2014. Chemical composition of fish hard parts as a natural marker of fish stocks. In: Stock Identification Methods. Elsevier, pp. 205–234. [CrossRef] [Google Scholar]
  • Kingsford MJ, Hughes JM, Patterson HM. 2009. Otolith chemistry of the non-dispersing reef fish Acanthochromis polyacanthus: cross-shelf patterns from the central Great Barrier Reef. Mar Ecol Progr Ser 377: 279–288. [CrossRef] [Google Scholar]
  • Kitchens LL, Rooker JR, Reynal L, Falterman BJ, Saillant E, Murua H. 2018. Discriminating among yellowfin tuna Thunnus albacares nursery areas in the Atlantic Ocean using otolith chemistry. Mar Ecol Prog Ser 603: 201–213. [CrossRef] [Google Scholar]
  • Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. J Stat Softw 25: 1–18. [Google Scholar]
  • Lee B, Mann BQ. 2017. Age and growth of narrow-barred Spanish mackerel Scomberomorus commerson inthe coastal waters of southern Mozambique and KwaZulu-Natal, South Africa. Afr J Mar Sci 39: 397–407. [CrossRef] [Google Scholar]
  • Legendre P, Anderson MJ. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69: 1–24. [CrossRef] [Google Scholar]
  • Lin Y-T., Wang C-H., You C-F., Tzeng W-N. 2013. Ba/ Ca ratios in otoliths of southern bluefin tuna (Thunnus maccoyii) as a biological tracer of upwelling in the Great Australian Bight. J Mar Sci Technol 21: 733–741. [MathSciNet] [Google Scholar]
  • Longhurst AR. 2007. The Indian Ocean. In Ecological Geography of the Sea. San Diego, CA: Academic Press, 2nd ed. pp. 275–320. [Google Scholar]
  • Malauene B. 2010. Shelf edge upwelling off northern Mozambique (Master's thesis). Mozambique, Faculty of Science, Departments of Zoology and Oceanography University of Cape Town. [Google Scholar]
  • Murtagh F, Contreras P. 2017. Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip Rev Data Min Knowl Discov 7: 1–20. [CrossRef] [Google Scholar]
  • Murtagh F, Legendre P. 2014. Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? J Classif 31: 274–295. [Google Scholar]
  • Nandkeolyar N, Raman M, Kiran GS. 2013. Comparative analysis of sea surface temperature pattern in the eastern and western gulfs of Arabian Sea and the Red Sea in recent past using satellite data. Int J Oceanogr 2013: 1–16. [CrossRef] [Google Scholar]
  • Panfili J, Pontual H de, Troadec H, Wright P. J. (Eds.). 2018. Manuel de sclérochronologie des poissons, Manuel de sclérochronologie des poissons, Hors collection. Marseille: IRD Éditions. 463 pp. [Google Scholar]
  • Papadopoulou C, Kanias GD, Moraitopoulou-kassimati E. 1980. Trace element content in fish otoliths in relation to age and size. Mar Pollut Bull 11: 68–72. [CrossRef] [Google Scholar]
  • Perrion MA, Kaemingk MA, Koupal KD, Schoenebeck CW, Bickford NA. 2020. Use of otolith chemistry to assess recruitment and habitat use of a white bass fishery in a Nebraska reservoir. Lake Reserv Manag 36: 64–74. [CrossRef] [Google Scholar]
  • Quartly G, Srokosz M. 2004. Eddies in the southern Mozambique Channel. Deep-sea Research − II. Top Stud Oceanogr 51: 69–83. [CrossRef] [Google Scholar]
  • R Core Team. 2018. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Radigan WJ, Carlson AK, Kientz JI, Chipps SR, Fincel MJ, Graeb BD. 2018. Species- and habitat-specific otolith chemistry patterns inform riverine fisheries management. River Res Appl 34: 279–287. [CrossRef] [Google Scholar]
  • Reygondeau G, Longhurst AR, Martinez E, Beaugrand G, Antoine D. 2013. Dynamic biogeochemical provinces in the global ocean. Glob Biogeochem Cycles 27: 1046–1058. [CrossRef] [Google Scholar]
  • Rogers TA, Fowler AJ, Steer MA, Gillanders BM. 2019. Discriminating natal source populations of a temperate marine fish using larval otolith chemistry. Front Mar Sci 6: 711. [CrossRef] [Google Scholar]
  • Rooker JR, David Wells RJ, Itano DG, Thorrold SR,Lee JM. 2016. Natal origin and population connectivity of bigeye and yellowfin tuna in the Pacific Ocean. Fish Oceanogr 25: 277–291. [CrossRef] [Google Scholar]
  • Schott FA, Xie SP, McCreary Jr JP. 2009. Indian Ocean circulation and climate variability. Rev Geophys 47: RG1002. [CrossRef] [Google Scholar]
  • Shaklee JB, Phelps SR, Salini JP. 1990. Analysis of fish stock structure and mixed-stock fisheries by the electrophoretic characterization of allelic isozymes. In: Whitmore DH (Ed.). Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management. CRC Press Inc. pp. 173–196. [Google Scholar]
  • Sirot C, Ferraton F, Panfili J, Childs AR, Guilhaumon F, Darnaude AM. 2017. elementr: An R package for reducing elemental data from LA-ICPMS analysis of biological calcified structures. Methods Ecol Evol 8: 1659–1667. [CrossRef] [Google Scholar]
  • Smit AJ, Roberts M, Anderson RJ, Dufois F, Dudley SF, Bornman TG, Olbers J, Bolton JJ. 2013. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS ONE 8: e81944. [CrossRef] [PubMed] [Google Scholar]
  • Sofianos SS, Johns WE. 2007. Observations of the summer Red Sea circulation. J Geophys Res 112: C06025. [Google Scholar]
  • Strnad L, Ettler V, Mihaljevic M, Hladil J, Chrastny V. 2009. Determination of trace elements in calcite using solution and laser ablation ICP-MS: Calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite. Geostand Geoanaly Res 33: 347–355. [CrossRef] [Google Scholar]
  • Sturrock AM, Hunter E, Milton JA, Johnson RC, Waring CP, Trueman CN. 2015. Quantifying physiological influences on otolith microchemistry. Methods Ecol Evol 6: 806–816. [CrossRef] [Google Scholar]
  • Sturrock AM, Trueman CN, Darnaude AM, Hunter E. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J Fish Biol 81: 766–795. [CrossRef] [PubMed] [Google Scholar]
  • Sutter FCI, Williams RO, Godcharles M. 1990. Movement patterns and stock affinities of king mackerel in the southern United States. Fish Bull U.S. 89: 315–324. [Google Scholar]
  • Taillebois L, Barton DP, Crook DA, Saunders T, Taylor J, Hearnden M, Saunders RJ, Newman SJ, Travers MJ, Welch DJ. 2017. Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evol Appl 10: 978–993. [CrossRef] [PubMed] [Google Scholar]
  • Tanner SE, Reis-Santos P, Cabral HN. 2016. Otolith chemistry in stock delineation: a brief overview, current challenges and future prospects. Fish Res 173: 206–213. [CrossRef] [Google Scholar]
  • Thorisson K, Jónsdóttir I, Marteinsdottir G, Campana S. 2011. The use of otolith chemistry to determine the juvenile source of spawning cod in Icelandic waters. ICES J Mar Sci 68: 98–106. [CrossRef] [Google Scholar]
  • Thresher RE. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fish Res 43: 165–204. [CrossRef] [Google Scholar]
  • Van Herwerden L, McIlwain J, Al-Oufi H, Al-Amry W, Reyes A. 2006. Development and application of microsatellite markers for Scomberomorus commerson (Perciformes; Teleostei) to a population genetic study of Arabian Peninsula stocks. Fish Res 79: 258–266. [CrossRef] [Google Scholar]
  • Vinayachandran PNM, Masumoto Y, Roberts MJ, Huggett JA, Halo I, Chatterjee A, Amol P, Gupta GVM, Singh A, Mukherjee A, Prakash S, Beckley LE, Raes EJ, Hood R. 2021. Reviews and syntheses: physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences 18: 5967–6029. [CrossRef] [Google Scholar]
  • Walsh CT, Gillanders BM. 2018. Extrinsic factors affecting otolith chemistry − implications for interpreting migration patterns in a diadromous fish. Environ Biol Fish 101: 905–916. [CrossRef] [Google Scholar]
  • Wang C-H., Lin YT, Shiao JC, You C-F., Tzeng W-N. 2009. Spatio-temporal variation in the elemental compositions of otoliths of southern bluefin tuna Thunnus maccoyii in the Indian Ocean and its ecological implication. J Fish Biol 75: 1173–1193. [CrossRef] [PubMed] [Google Scholar]
  • Welsh DJ, Hoyle SD, McPherson G.R., Gribble NA. 2002. Preliminary assessment of the Queensland east coast Spanish mackerel fishery. Information Series QI02110, Queensland Government, Department of Primary Industries, Cairs. [Google Scholar]
  • Wheeler SG, Russell AD, Fehrenbacher JS, Morgan SG. 2016. Evaluating chemical signatures in a coastal upwelling region to reconstruct water mass associations of settlement-stage rockfishes. Mar Eco Progr Ser 550: 191–206. [CrossRef] [Google Scholar]
  • Woodson LE, Wells BK, Grimes CB, Franks RP, Santora JA, Carr MH. 2013. Water and otolith chemistry identify exposure of juvenile rockfish to upwelled waters in an open coastal system. Mar Ecol Progr Ser 473: 261–273. [CrossRef] [Google Scholar]
  • Yao F, Hoteit I, Pratt LJ, Bower AS, Zhai P, Köhl A, Gopalakrishnan G. 2014. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res Oceans 119: 2238–2262. [CrossRef] [Google Scholar]
  • Zubier K. 2010. Sea level variations at Jeddah, eastern coast of the red sea. J. King Abdulaziz Univ-Mar Sci 21: 73–86. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.