Open Access
Issue
Aquat. Living Resour.
Volume 35, 2022
Article Number 13
Number of page(s) 10
DOI https://doi.org/10.1051/alr/2022013
Published online 23 September 2022
  • Baidai Y, Capello M, Billet N, Floch L, Simier M, Sabarros P, Dagorn L. 2017. Towards the derivation of fisheries-independent abundance indices for tropical tunas: Progress in the echosounders buoys data analysis. IOTC-2017-WPTT19-22 Rev 1. [Google Scholar]
  • Baidai Y, Dagorn L, Amandè MJ, Gaertner D, Capello M. 2020a. Tuna aggregation dynamics at Drifting Fish Aggregating Devices: a view through the eyes of commercial echosounder buoys. ICES J Mar Sci 77: 2960–2970. [CrossRef] [Google Scholar]
  • Baidai Y, Dagorn L, Amande MJ, Gaertner D, Capello M. 2020b. Machine learning for characterizing tropical tuna aggregations under Drifting Fish Aggregating Devices (DFADs) from commercial echosounder buoys data. Fish Res 229: 105613. [CrossRef] [Google Scholar]
  • Brehmer P, Sancho G, Trygonis V, Itano D, Dalen J, Fuchs A, Faraj A, Taquet M. 2018. Towards an autonomous pelagic observatory: experiences from monitoring fish communities around drifting FADs. Thalass An Int J Mar Sci 35: 1–3. [MathSciNet] [Google Scholar]
  • Breiman L. 2001. Random forests. Mach Learn 45: 5–32. [Google Scholar]
  • Chassot E, Santiago J, Lucas V. 2019. Major reduction in the number of FADs used in the Seychelles purse seine fishery following IOTC limitations. IOTC-2019-WPDCS15-21_Rev1. [Google Scholar]
  • Curnick DJ, Feary DA, Cavalcante GH. 2020. Risks to large marine protected areas posed by drifting fish aggregation devices. Conserv Biol . [Google Scholar]
  • Dagorn L, Holland KN, Restrepo V, Moreno G. 2013. Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems? Fish Fish 14: 391–415. [CrossRef] [Google Scholar]
  • Davies T, Curnick D, Barde J, Chassot E. 2017. Potential environmental impacts caused by beaching of drifting fish aggregating devices and identification of management solutions and uncertainties. IOTC-2017-WGFAD01-08 Rev_1. [Google Scholar]
  • Escalle L, Hare SR, Vidal T, Brownjohn M, Hamer P, Pilling G. 2021. Quantifying drifting Fish Aggregating Device use by the world's largest tuna fishery. ICES J Mar Sci 78: 2432–2447. [CrossRef] [Google Scholar]
  • Escalle L, Scutt PJ, Pilling G. 2019. Beaching of drifting FADs in the WCPO: recent science, management advice and in-country data collection programmes. SPC Fish Newsl 9–14. [Google Scholar]
  • Fonteneau A, Chassot E, Bodin N. 2013. Global spatio-temporal patterns in tropical tuna purse seine fisheries on drifting fish aggregating devices (DFADs): TAKING a historical perspective to inform current challenges. Aquat Living Resour 26: 37–48. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fonteneau A, Gaertner D, Nordstrom V. 1999, An overview of problems in the CPUE-abundance relationship for the tropical purse seine fisheries. Collect Vol Sci Pap ICCAT 49: 259–276. [Google Scholar]
  • Gerritsen H, Lordan C. 2011. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J Mar Sci 68: 245–252. [CrossRef] [Google Scholar]
  • Gershman D, Nickson A, O'Toole M. 2015. Estimating The Use of FADS Around the World, The Pew Chari table Trusts . [Google Scholar]
  • Goñi N, Santiago J, Murua H, Fraile I, López J, Krug I, Ruiz J, Pascual P. 2017. Verification of the limitation of the number of FADs and best practices to reduce their impact on by-catch fauna. Collect Vol Sci Pap ICCAT 73: 988–1004. [Google Scholar]
  • Grande M, Capello M, Baidai Y, Uranga J, Boyra G, Quincoces I, Orue B, Ruiz J, Zudaire I, Murua H, Depetris M, Floch L, Santiago J. 2020. From fishermen to scientific tools: Progress on the recovery and standardized processing of instrumented buoys data. Collect Vol Sci Pap ICCAT 76: 881–891. [Google Scholar]
  • Hintzen NT, Bastardie F, Beare D, Piet GJ, Ulrich C, Deporte N, Egekvist J, Degel H. 2012. VMStools: Open-source software for the processing, analysis and visualisation of fisheries logbook and VMS data. Fish Res 115–116: 31–43. [CrossRef] [Google Scholar]
  • Imzilen T, Chassot E, Barde J, Demarcq H, Maufroy A, Roa-Pascuali L, Ternon J-F, Lett C. 2019. Fish aggregating devices drift like oceanographic drifters in the near-surface currents of the Atlantic and Indian Oceans. Prog Oceanogr 171: 108–127. [CrossRef] [Google Scholar]
  • Imzilen T, Lett C, Chassot E, Kaplan DM. 2021. Spatial management can significantly reduce dFAD beachings in Indian and Atlantic Ocean tropical tuna purse seine fisheries. Biol Conserv 254: 108939. [CrossRef] [Google Scholar]
  • Imzilen T, Lett C, Chassot E, Maufroy A, Goujon M, Kaplan DM. 2022. Recovery at sea of abandoned, lost or discarded drifting fish aggregating devices. Nat Sustain 34: 731–754. [Google Scholar]
  • Katara I, Gaertner D, Billet N, Lopez J, Fonteneau A, Murua H, Baez JC. 2017. Standardisation of skipjack tuna CPUE for the EU purse seine fleet operating in the Indian Ocean. IOTC-2017-WPTT19-38. [Google Scholar]
  • Katara I, Gaertner D, Maufroy A, Chassot E. 2016. Standardization of catch rates for the eastern tropical atlantic bigeye tuna caught by the French purse seine DfAD fishery. Collect Vol Sci Pap ICCAT 72: 406–414. [Google Scholar]
  • Lambert GI, Jennings S, Hiddink JG, Hintzen NT, Hinz H, Kaiser MJ, Murray LG. 2012. Implications of using alternative methods of vessel monitoring system (VMS) data analysis to describe fishing activities and impacts. ICES J Mar Sci 69: 682–693. [CrossRef] [Google Scholar]
  • Lee J, South AB, Jennings S. 2010. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J Mar Sci 67: 1260–1271. [Google Scholar]
  • Lennert-Cody CE, Moreno G, Restrepo V, Román MH, Maunder MN. 2018, Recent purse-seine FAD fishing strategies in the eastern Pacific Ocean: what is the appropriate number of FADs at sea? ICES J Mar Sci 75: 1748–1757. [CrossRef] [Google Scholar]
  • Lopez J, Moreno G, Boyra G, Dagorn L. 2016. A model based on data from echosounder buoys to estimate biomass of fish species associated with fish aggregating devices. Fish Bull 114: 166–178. [CrossRef] [Google Scholar]
  • Lopez J, Moreno G, Ibaibarriaga L, Dagorn L. 2017. Diel behaviour of tuna and non-tuna species at drifting fish aggregating devices (DFADs) in the Western Indian Ocean, determined by fishers' echo-sounder buoys. Mar Biol 164: 44. [CrossRef] [Google Scholar]
  • Lopez J, Moreno G, Sancristobal I, Murua J. 2014. Evolution and current state of the technology of echo-sounder buoys used by Spanish tropical tuna purse seiners in the Atlantic, Indian and Pacific Oceans. Fish Res 155: 127–137. [CrossRef] [Google Scholar]
  • Mannocci L, Baidai Y, Forget F, Tolotti MT, Dagorn L, Capello M. 2021. Machine learning to detect bycatch risk: novel application to echosounder buoys data in tuna purse seine fisheries. Biol Conserv 255: 109004. [CrossRef] [Google Scholar]
  • Maufroy A, Chassot E, Joo R, Kaplan DM. 2015. Large-scale examination of spatio-temporal patterns of drifting Fish Aggregating Devices (dFADs) from tropical tuna fisheries of the Indian and Atlantic Oceans. PLoS One 10: 1–21. [Google Scholar]
  • Moreno G, Boyra G, Sancristobal I, Itano D, Restrepo V. 2019. Towards acoustic discrimination of tropical tuna associated with Fish Aggregating Devices. PLoS One 14: e0216353. [CrossRef] [PubMed] [Google Scholar]
  • Moreno G, Dagorn L, Capello M, Lopez J, Filmalter J, Forget F, Sancristobal I, Holland K, 2016. Fish aggregating devices (FADs) as scientific platforms. Fish Res 178: 122–129. [CrossRef] [Google Scholar]
  • Orue B, Lopez J, Moreno G, Santiago J, Boyra G, Soto M, Murua H. 2019a. Using fishers' echo-sounder buoys to estimate biomass of fish species associated with drifting fish aggregating devices in the Indian Ocean. Rev Investig Mar AZTI 26: 1–13. [Google Scholar]
  • Orue B, Lopez J, Moreno G, Santiago J, Boyra G, Uranga J, Murua H. 2019b. From fisheries to scientific data: a protocol to process information from fishers' echo-sounder buoys. Fish Res 215: 38–43. [CrossRef] [Google Scholar]
  • Santiago J, Lopez J, Moreno G, Quincoces I, Soto M, Murua H. 2016. Towards a Tropical Tuna Buoy-derived Abundance Index (TT-BAI). Collect Vol Sci Pap ICCAT 72: 714–724. [Google Scholar]
  • Santiago J, Uranga J, Quincoces I, Grande M, Murua H. 2020. A Novel Index of Abundance of Skipjack in the Indian Ocean Derived From Echosounder Buoys. Collect Vol Sci Pap ICCAT 76: 321–343. [Google Scholar]
  • Scott GP, Lopez J. 2014. The use of FADs in tuna fisheries, European Union. Directorate General for Internal Policies. [Google Scholar]
  • Sokal RR. 1958. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38: 1409–1438. [Google Scholar]
  • Torres-Irineo E, Gaertner D, Chassot E, Dreyfus-León M. 2014. Changes in fishing power and fishing strategies driven by new technologies: the case of tropical tuna purse seiners in the eastern Atlantic Ocean. Fish Res 155: 10–19. [CrossRef] [Google Scholar]
  • Wain G, Guéry L, Kaplan DM, Gaertner D. 2020. Quantifying the increase in fishing efficiency due to the use of drifting FADs equipped with echosounders in tropical tuna purse seine fisheries. ICES J Mar Sci . [PubMed] [Google Scholar]
  • Wessel P, Smith WHFF. 1996. A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res Solid Earth 101: 8741–8743. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.