Free Access
Issue |
Aquat. Living Resour.
Volume 32, 2019
|
|
---|---|---|
Article Number | 26 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/alr/2019024 | |
Published online | 10 December 2019 |
- Adey EA, Black KD, Sawyer T, Shimmield TM, Trueman CN. 2009. Scale microchemistry as a tool to investigate the origin of wild and farmed Salmo salar . Mar Ecol Prog Ser 390: 225–235. [Google Scholar]
- Anraku K, Masuda T, Kawamura G, Mana RR. 1999. Development of the inter-nostril epidermis in hatchery reared red sea bream, Pagrus major . Nippon Suisan Gakkaishi 65: 501–502 (in Japanese with English abstract). [CrossRef] [Google Scholar]
- Araki H, Cooper B, Blouin MS. 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318: 100–103. [Google Scholar]
- Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere JT, Sfakianakis DG, Somarakis S. 2012. Discriminating farmed gilthead sea bream Sparus aurata and European sea bass Dicentrarchus labrax from wild stocks through scales and otoliths. J Fish Biol 80: 2159–2175. [CrossRef] [PubMed] [Google Scholar]
- Earl DA, von Holdt BM. 2012. Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359–361. [Google Scholar]
- Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. [CrossRef] [PubMed] [Google Scholar]
- Fiske P, Lund RA, Hansen LP. 2006. Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989–2004. ICES J Mar Sci 63: 1182–1189. [Google Scholar]
- Gausen D, Moen V. 1991. Large-scale escapes of farmed Atlantic salmon (Salmo salar) into Norwegian rivers threaten natural population. Can J Fish Aquat Sci 48: 426–428. [Google Scholar]
- Gonzalez EB, Aritaki M, Taniguchi N. 2012. Microsatellite multiplex panels for population genetic analysis of red sea bream Pagrus major . Fish Sci 78: 603–611. [Google Scholar]
- Glover KA. 2010. Forensic identification of fish farm escapees: the Norgwegian experience. Aquac Environ Interact 1: 1–10. [Google Scholar]
- Glover KA, Dahle G, Jørstad KE. 2011. Genetic identification of farmed and wild Atlantic cod, Gadus morhua, in coastal Norway. ICES J Mar Sci 68: 901–910. [Google Scholar]
- Hatanaka A, Yamada S, Sakamoto T, Mitsuboshi T. 2006. Isolation and application of microsatellite DNA markers for pedigree tracing of seedlings of red sea bream (Pagrus major). J World Aquacult Soc 37: 139–143. [CrossRef] [Google Scholar]
- Hindar K, Fleming IA, McGinnity P, Diserud A. 2006. Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES J Mar Sci 63: 1234–1247. [Google Scholar]
- Jackson D, Drumm A, McEvoy S, Jensen Ø, Mendiiola D, Gabiña, G, Black KD. 2015. A pan-European valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture 436: 21–26. [Google Scholar]
- Jacobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. [CrossRef] [PubMed] [Google Scholar]
- Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405. [CrossRef] [PubMed] [Google Scholar]
- Kaifu K, Itakura H, Amano Y, Shirai K, Yokouchi K, Wakiya R, Murakami-Sugihara N, Washitani I, Yada T. 2018. Discrimination of wild and cultured Japanese eels based on otholith stable isotope ratios. ICES J Mar Sci 75: 719–726. [Google Scholar]
- Kato K, Hayashi R, Ishitani Y, Yamamoto S, Miyashita S, Murata O, Kumai H. 1999. Gonadal sex differentiation of red sea bream of a selected strain. Aquacult Sci 47: 29–34. [Google Scholar]
- Lynch M, O'Hely M. 2001. Captive breeding and the genetic fitness of natural population. Conserv Genet 2: 363–378. [Google Scholar]
- Makino M. 2017. National Aquaculture Sector Overview. Japan. National Aquaculture Sector Overview Fact Sheets. In. FAO Fisheries and Aquaculture Department. [Google Scholar]
- McGinnity P, Stone C, Taggart JB, Cooke D, Cotter D, Hynes R, McCamley C, Cross T, Ferguson A. 1997. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J Mar Sci 54: 998–1008. [Google Scholar]
- McGinnity P, Prodöhl P, Ferguson A, Hynes R, Ó Maoiléidigh N, Baker N, Cotter D, O'Hea B, Cooke D, Rogan G, Taggart J, Cross T. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond 270: 2443–2450. [Google Scholar]
- Merimans PG, van Tienderen PH. 2004. GENOTYPE and GENODIIVE: two programs for the analysis of genetic diversity of sexual organisms. Mol Ecol Notes 4: 792–794. [Google Scholar]
- Miyashita S. 2008. The history of marine aquaculture facilities and the net-cage culture system. J Fish Technol 1: 13–19 (in Japanese with English abstract). [Google Scholar]
- Murata O, Harada T, Miyashita S, Izumi K, Maeda S, Kato K, Kumai H. 1996. Selective breeding for growth in red sea bream. Fish Sci 62: 845–849. [Google Scholar]
- Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M. 2005. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. BioScience 55: 427–437. [Google Scholar]
- Paetkau D, Calvert W, Strling I, Strobeck C. 1995. Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4: 347–354. [CrossRef] [PubMed] [Google Scholar]
- Paetkau D, Slade R, Burden M, Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13: 55–65. [CrossRef] [PubMed] [Google Scholar]
- Peakall R, Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288–295. [Google Scholar]
- Perez-Enriquez R, Takagi M, Taniguchi N. 1998. Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture 173: 413–423. [Google Scholar]
- Piry S, Alpetite A, Cornuet JM, Paetkau D, Baudouin D, Estoup A. 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536–539. [CrossRef] [PubMed] [Google Scholar]
- Rannala B, Mountain JL. 1997. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94: 9197–9201. [CrossRef] [Google Scholar]
- Rice WR. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225. [CrossRef] [PubMed] [Google Scholar]
- Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4: 137–138. [Google Scholar]
- Ruzzante DE. 1994. Domestication effects on aggressive and schooling behavior in fish. Aquaculture 120: 1–24. [Google Scholar]
- Ryman N, Palm S. 2006, POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6: 600–602. [Google Scholar]
- Sawayama E, Takagi M. 2016. Genetic diversity and structure of domesticated strains of red sea bream, Pagrus major, inferred from microsatellite DNA markers. Aquac Res 47: 379–389. [Google Scholar]
- Sawayama E, Takagi M. 2017. Evaluation of an RSIVD-resistant trait of red sea bream Pagrus major Broodstock using DNA-based pedigree tracings: A field study. Fish Pathol 52: 23–30. [Google Scholar]
- Sawayama E, Tanizawa S, Kitamura SI, Nakayama K, Ohta K, Ozaki A, Takagi M. 2017. Identification of quantitative trait loci for resistance to RSIVD in red sea bream (Pagrus major). Mar Biotechnol 19: 601–613. [Google Scholar]
- Sawayama E, Noguchi D, Nakayama K, Takagi M. 2018a. Identification, characterization, and mapping of a novel SNP associated with body color transparency in juvenile red sea bream (Pagrus major). Mar Biotechnol 20: 481–489. [Google Scholar]
- Sawayama E, Matsushige M, Takagi M. 2018b. Polymorphisms of the growth hormone gene in domesticated red sea bream populations (Pagrus major) based on minisatellite genotypes and nucleotide sequences. Aquac Res 49: 2833–2843. [Google Scholar]
- Šegvić-Bubić T, Talijančić I, Grubišić L, Izquierdo-Gomez D, Katavić I. 2014. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: implications for management. Aquac Environ Interact 6: 43–54. [Google Scholar]
- Šegvić-Bubić T, Grubišić L, Trumbić Ž, Stanić R, Ljubković J, Maršić-Lučić J, Katavić I. 2017. Genetic characterization of wild and farmed European seabass in the Adriatic sea: assessment of farmed escapees using a Bayesian approach. ICES J Mar Sci 74: 369–378. [Google Scholar]
- Šegvić-Bubić T, Arechavala-Lopez P, Vučić I, Talijančić I, Grubišić L, Žužul I, Kovač Z. 2018. Site fidelity of farmed gilthead seabream Sparus aurata escapees in a costal environment of the Adriatic Sea. Aquacult Environ Interact 10: 21–34. [Google Scholar]
- Smith PJ. 1994. Genetic diversity of marine fisheries resources possible impacts of fishing. FAO, pp. 53. [Google Scholar]
- Somarakis S, Pavlidis M, Saapoglou C, Tsigenopoulos S, Dempeter T. 2013. Evidence for ‘escape through spawning’ in large gilthead sea bream Sparus aurata reared in commercial sea-cages. Aquacult Environ Interact 3: 135–152. [Google Scholar]
- Talijančić I, Šegvić-Bubić T, Žužul I, Džoić T, Maršić-Lučić J, Grubišić L. 2019. Morphological and ecophysiological adaptations of wild gilthead seabream Sparus aurata associated with tuna farms. Aquacult Environ Interact 11: 97–110. [CrossRef] [Google Scholar]
- Takagi M, Taniguchi N, Cook D, Doyle RW. 1997. Isolation and characterization of microsatellite loci from red sea bream Pagrus major and detection in closely related species. Fish Sci 63: 199–204. [Google Scholar]
- Tymuchuk WE, Sundström LF, Devlin RH. 2007. Growth and survival trade-offs and outbreeding depression in rainbow trout (Oncorhynchus mykiss). Evolution 61: 1225–1237. [PubMed] [Google Scholar]
- Vähä JP, Primmer CR. 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 14: 63–72. [Google Scholar]
- van Oosterhout C, Hutchinson WFD, Wills DP, Shipley P. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [Google Scholar]
- Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370. [CrossRef] [PubMed] [Google Scholar]
- Wringe BF, Stanley RRE, Jeffery NW, Anderson EC, Bradbury IR. 2017. Hybrid detective: a workflow and package to facilitate the detection of hybridization using genomic data in r. Mol Ecol Notes 17: 275–284. [Google Scholar]
- Wringe BF, Jeffery NW, Stanley RRE, Hamilton LC, Anderson EC, Fleming IA, Grant C, Dempson JB, Veinott G, Duffy S, Bradbury IR. 2018. Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Commun Biol 1: 108. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.